Skip to main content

EEQT — A way out of the quantum trap

  • Conference paper
  • First Online:
Open Systems and Measurement in Relativistic Quantum Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 526))

  • 163 Accesses

Abstract

We review Event Enhanced Quantum Theory (EEQT). In Sect. 1 we address the question ‘Is quantum theory the last word’. In particular we respond to some of the challenging statements of H. P. Stapp. We also discuss a possible future of the quantum paradigm — see also Sect. 5. In Sect. 2 we give a short sketch of EEQT. Examples are given in Sect. 3. Section 3.3 discusses a completely new phenomenon — chaos and fractal-like phenomena caused by a simultaneous ‘measurement’ of several non-commuting observables. In Sect. 4 we answer ‘frequently asked questions’ concerning EEQT — mostly coming from referees of our publications. Summary and conclusions are in Sect. 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ph. Blanchard and A. Jadczyk, Eds. Quantum Future, Proceedings of the X-th Max Born Symposium, to appear, (Springer, 1999).

    Google Scholar 

  2. H. P. Stapp, Quantum Ontology and Mind-Matter Synthesis', also available from http://www-physics.lbl.gov/~stapp/stappfiles.html.

    Google Scholar 

  3. I. J. Good, The Scientist Speculates (Heineman, 1962).

    Google Scholar 

  4. E. Schrödinger, “The Philosophy of Experiment”, Il Nuovo Cimento, 1, 5–15 (1955).

    Article  Google Scholar 

  5. A. Jadczyk, ‘Particle Tracks, Events and Quantum Theory', Progr. Theor. Phys. 93, 631–646 (1995), available from hep-th/9407157.

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Jadczyk, ‘On Quantum Jumps, Events and Spontaneous Localization Models', Found. Phys. 25, 743–762 (1995) available from hep-th/9408020.

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Bell, “Against measurement”, in Sixty-Two Years of Uncertainty. Historical, Philosophical and Physical Inquiries into the Foundations of Quantum Mechanics, Proceedings of a NATO Advanced Study Institute, August 5–15, Erice, Ed. Arthur I. Miller, NATO ASI Series B vol. 226 (Plenum Press, New York, 1990).

    Google Scholar 

  8. J. Bell, “Towards an exact quantum mechanics”, in Themes in Contemporary Physics II. Essays in honor of Julian Schwinger's 70th birthday, S. Deser, R. J. Finkelstein, Eds. /World Scientific, Singapore, 1989).

    Google Scholar 

  9. R. Haag, ‘Irreversibility introduced on a fundamental level', Commun. Math. Phys. 123, 245–251 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Haag, ‘Thought of the Synthesis of Quantum Physics and General Relativity and the Role of Space-time', Nucl. Phys. B18, 135–140 (1990).

    MathSciNet  Google Scholar 

  11. R. Haag, ‘An Evolutionary Picture for Quantum Physics', Commun. Math. Phys. 180, 733–743 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. R. Haag, Local Quantum Physics 2nd rev. and enlarged ed. (1996), Ch. VII: Principles and lessons of Quantum Physics. A Review of Interpretations, Mathematical Formalism and Perspective.

    Google Scholar 

  13. R. Haag, ‘Objects, Events and Localization', in [1].

    Google Scholar 

  14. D. Deutsch, The Fabric of Reality (Allen Lane, The Penguin Press, 1997).

    Google Scholar 

  15. F. A. Wolf, Parallel Universes (Touchstone, New York, 1990).

    Google Scholar 

  16. Ph. Blanchard and A. Jadczyk, “On the interaction between classical and quantum systems”, Phys. Lett. A 175, 157–164 (1993).

    ADS  MathSciNet  Google Scholar 

  17. Ph. Blanchard and A. Jadczyk, ‘Event-Enhanced-Quantum Theory and Piece-wise Deterministic Dynamics', Ann. der Physik 4, 583–599 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Ph. Blanchard and A. Jadczyk, “Events and Piecewise Deterministic Dynamics in Event-Enhanced Quantum Theory”, Phys. Lett. A203, 260–266 (1995).

    ADS  MathSciNet  Google Scholar 

  19. Ph. Blanchard and A. Jadczyk, ‘Time of Events in Quantum Theory', Helv. Phys. Acta 69, 613–635 (1996), also available as quant-ph/9602010.

    MATH  MathSciNet  Google Scholar 

  20. S. Haroche, ‘Observing the decoherence of the meter in a measurement: a variation on Schrödinger's cat experiment', in [1].

    Google Scholar 

  21. H. Walther, ‘Quantum Optics of a Single Atom', in [1].

    Google Scholar 

  22. A. Ekert, Web page of Centre of Quantum Computation of the University of Oxford, URL address http://www.qubit.org/intros/crypt.html.

    Google Scholar 

  23. S. Benjamin and A. Ekert, as above, URL address http://www.qubit.org/Intros_Tuts.html.

    Google Scholar 

  24. R. Omnès, ‘Theory of decoherence effect', Fortschr. Physik 46, 771–777 (1988).

    Article  ADS  Google Scholar 

  25. R. Omnès, Understanding Quantum Mechanics (Princeton University Press, 1999).

    Google Scholar 

  26. S. Habib, K. Shizame and W. Zurek, ‘Decoherence, chaos and the correspondence principle', Phys. Rev. Lett. 80, 4361–4365 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. W. Zurek, ‘Decoherence, einselection and the existential interpretation (the rough guide)', Phil. Trans. R. Soc. Lond. A 356 1793–1821 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  28. J. P. Palao, J. G. Muga, S. Brouard and A. Jadczyk, ‘Barrier traversal times using a phenomenological track formation model', Phys. Lett. A 233, 227–232 (1997).

    ADS  Google Scholar 

  29. A. Rushhaupt, ‘Simulations of Barrier Traversal and Reflection Times based on EEQT', Phys. Lett A 250, 249–256 (1998).

    ADS  Google Scholar 

  30. A. Jadczyk, G. Kondrat and R. Olkiewicz, ‘On uniqueness of the jump process in quantum measurement theory', J. Phys. A 30, 1–18 (1996), available from quant-ph/9512002.

    MathSciNet  Google Scholar 

  31. V. Gorini, A. Kossakowski and E. C. G. Sudarshan, Completely positive dynamical semigroups of N-level systems, J. Math. Phys. 17, (821–825 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Lindblad, On the Generators of Quantum Mechanical Semigroups, Comm. Math. Phys. 48, 119–130 (1976).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. W. B. Arveson, ‘Subalgebras of C*-algebras', Acta Math. 123, 141–224 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  34. E. Christensen and D. Evans, Cohomology of operator algebras and quantum dynamical semigroups, J. London. Math. Soc. 20, 358–368 (1978).

    Article  MathSciNet  Google Scholar 

  35. Ph. Blanchard and A. Jadczyk, ‘Relativistic Quantum Events', Found. Phys. 26, 1669–1681 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  36. M. F. Barnsley, Fractals Everywhere (Academic Press, Boston, 1988).

    MATH  Google Scholar 

  37. A. Jadczyk, ‘IFS Signatures of Quantum States', IFT Uni Wroclaw, internal report, September 1993.

    Google Scholar 

  38. G. Jastrzebski, Ph.D. thesis (in Polish); A. Jadczyk and G. Jastrzebski, ‘Chaos from Quantum Measurements', to be published.

    Google Scholar 

  39. G.C. Ghirardi, — in this volume, for a recent popular account see also internet URL address http://www.newscientist.co.uk/ns/970426/features.html.

    Google Scholar 

  40. D. Bohm and B. Hiley, The Undivided Universe (Routledge, London, 1994).

    Google Scholar 

  41. M. H. A. Davis, Lectures on Stochastic Control and Nonlinear Filtering, Tata Institute of Fundamental Research (Springer Verlag, Berlin, 1984).

    MATH  Google Scholar 

  42. M. H. A. Davis, Markov models and optimization, Monographs on Statistics and Applied Probability (Chapman and Hall, London, 1993).

    MATH  Google Scholar 

  43. R. Olkiewicz, ‘Some mathematical problems related to classical-quantum interactions', Rev. Math. Phys. 9, 719–747 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  44. A. Einstein and N. Rosen, Phys. Rev. 48, 73–77 (1935).

    Article  MATH  ADS  Google Scholar 

  45. A. Jadczyk, Vanishing Vierbein in Gauge Theories of Gravitation, preprint ITF Uni Goettingen, August 1982, available from http: //www.geocities.com/ lark22/jadpub.html.

    Google Scholar 

  46. R. Coquearaux and A. Jadczyk, Riemannian Geometry Fiber Bundles Kaluza—Klein Theories and All that ....,, World Scientific, Lecture Notes in Phys. 16, (1988).

    Google Scholar 

  47. P. Nottale, ‘Scale Relativity and Fractal Space-Time: Applications to Quantum Physics, Cosmology and Chaotic Systems', Chaos, Solitons and Fractals 7, 877–938 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. On the Way to Understanding the Time Phenomenon. The Construction of Time in Natural Science. Part 2: The ‘Active’ Properties of Time According to N.A. Kozyrev., World Scientific, Series on Advances in Mathematics for Applied Sciences — Vol. 3, (1996).

    Google Scholar 

  49. A. D. Sakharov, ‘Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation', Dokl. Akad. Nauk. SSSR (Sov. Phys.-Dokl.) 12 1040 (1968).

    Google Scholar 

  50. V. P. Frolov and I. D. Novikov, ‘Physical effects in wormholes and time machine', Phys. Rev. D42, 1057–1065 (1990).

    ADS  MathSciNet  Google Scholar 

  51. A. K. Guts, ‘Time machine as four-dimensional wormhole', available from grqc/ 9612064; cf. also references therein.

    Google Scholar 

  52. I. A. Eganova, The World of Events Reality, book, to appear 1999.

    Google Scholar 

  53. Ph. Blanchard and A. Jadczyk, ‘Strongly coupled quantum and classical systems and Zeno's effect', Phys. Lett. A 183, 272–276 (1993).

    ADS  MathSciNet  Google Scholar 

  54. Ph. Blanchard and A. Jadczyk, ‘Event-Enhanced Formalism of Quantum Theory or Columbus Solution to the Quantum Measurement Problem', in Quantum Communications and Measurement, Edited by V.P. Belavkin, (Plenum Press, New York, 1995), pp. 223–233.

    Google Scholar 

  55. A. Jadczyk, ‘Topics in Quantum Dynamics', in Infinite Dimensional Geometry, Noncommutative Geometry, Operator Algebras and Fundamental Interactions, ed. R. Coquereaux et al., (World Scientific, Singapore, 1995), pp. 59–93; hep-th

    Google Scholar 

  56. Ph. Blanchard and A. Jadczyk ‘Classical and quantum intertwine', in Proceedings of the Symposium on Foundations of Modern Physics, Cologne, June 1993, Ed. P. Bush et al. (World Scientific, 1993), pp 65–76; hep-th/9309112.

    Google Scholar 

  57. Ph. Blanchard and A. Jadczyk, “How and When Quantum Phenomena Become Real”, in Proc. Third Max Born Symp. Stochasticity and Quantum Chaos, Sobotka 1993, Eds. Z. Haba et all. (Kluwer Publ. 1994) pp. 13–31.

    Google Scholar 

  58. Ph. Blanchard and A. Jadczyk, ‘Quantum Mechanics with Event Dynamics', Rep. Math. Phys. 36, 235–244 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. Ph. Blanchard, A. Jadczyk, R. Olkiewicz, ‘The Piecewise Deterministic Process Associated to EEQT', Preprint Uni. Bielefeld Forschungszentrum BiBoS, Nr. 802/4/98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Heinz-Peter Breuer Francesco Petruccione

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Blanchard, P., Jadczyk, A. (1999). EEQT — A way out of the quantum trap. In: Breuer, HP., Petruccione, F. (eds) Open Systems and Measurement in Relativistic Quantum Theory. Lecture Notes in Physics, vol 526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104399

Download citation

  • DOI: https://doi.org/10.1007/BFb0104399

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65978-5

  • Online ISBN: 978-3-540-48808-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics