Skip to main content

Solution of sparse systems of equations on multiprocessor architectures

  • Conference paper
  • First Online:
Numerical Analysis and Parallel Processing

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1397))

Abstract

The primary objective of these lecture notes is to introduce the reader to some basic techniques for solving large sparse systems of equations, along with some currently active areas of research on the subject. In addition, introductory material is included on the basic problems and techniques associated with performing numerical computations on multiprocessors, using the problem of solving large sparse systems as an application example.

This work was supported in part by Canadian Natural Sciences and Engineering Research Council grant A8111, by the Applied Mathematical Sciences Research Program, Office of Energy Research, U.S. Department of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems Inc., by the U.S. Air Force Office of Scientific Research under contract AFOSR-ISSA-87-00013, and by the Science Alliance, a state supported program at the University of Tennessee.

Also affiliated with the Mathematical Sciences Section, Oak Ridge National Laboratory, through the UT/ORNL Distinguished Scientist program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. HEP Fortran 77 User's Guide. Denelcor, Inc., Aurora, CO, February 1982.

    Google Scholar 

  2. R.P. Brent and F.T. Luk. A systolic architecture for the singular value decomposition. Technical Report TR-82-522, Dept. of Comput. Sci., Cornell University, Ithaca, 1982.

    Google Scholar 

  3. T.F. Coleman, A. Edenbrandt, and J.R. Gilbert. Predicting fill for sparse orthogonal factorization. J. Assoc. Comput. Mach., 33:517–532, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.J. Dongarra, F.G. Gustavson, and A. Karp. Implementing linear algebra algorithms for dense matrices on a vector pipeline machine. SIAM Review, 26:91–112, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  5. I.S. Duff. Full matrix techniques in sparse Gaussian elimination. In G. A. Watson, editor, Lecture Notes in Mathematics (912), Springer-Verlag, 1982.

    Google Scholar 

  6. I.S. Duff. MA28 — A set of FORTRAN subroutines for sparse unsymmetric linear equations. Technical Report AERE R-8730, Harwell, 1977.

    Google Scholar 

  7. I.S. Duff. Parallel implementation of multifrontal schemes. Parallel Computing, 3:193–204, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  8. I.S. Duff and L. Johnsson. The effect of orderings on the parallelization of sparse code. Technical Memorandum. Mathematical and Computer Science Division, Argonne National Laborary, 1986.

    Google Scholar 

  9. I.S. Duff and J.K. Reid. The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans. on Math. Software, 9:302–325, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  10. I.S. Duff and J.K. Reid. The multifrontal solution of unsymmetric sets of linear equations. SIAM J. Sci. Stat. Comput., 5:633–641, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  11. S.C. Eisenstat, M.H. Schultz, and A.H. Sherman. Applications of an element model for Gaussian elimination. In J. R. Bunch and D. J. Rose, editors, Sparse Matrix Computations, pages 85–96, Academic Press, 1976.

    Google Scholar 

  12. S.C. Eisenstat, M.H. Schultz, and A.H. Sherman. Minimal storage band elimination. In A.H. Sameh and D. Kuck, editors, Proceedings of the Symposium on Sparse Matrix Computations, pages 273–286, 1977.

    Google Scholar 

  13. S.C. Eisenstat, M.H. Schultz, and A.H. Sherman. Software for sparse Gaussian elimination with limited core storage. In I.S. Duff and G.W. Stewart, editors, Sparse Matrix Proceedings, pages 135–153, SIAM Press, 1978.

    Google Scholar 

  14. G.E. Forsythe and C.B. Moler. Computer solution of linear algebraic systems. Prentice-Hall Inc., Englewood Cliffs, N.J., 1967.

    MATH  Google Scholar 

  15. G.A. Geist and M.T. Heath. Parallel Cholesky factorization on a hypercube multiprocessor. Technical Report ORNL-6211, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1985.

    Google Scholar 

  16. J.A. George and M.T. Heath. Solution of sparse linear least squares problems using Givens rotations. Linear Algebra and its Appl., 34:69–83, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.A. George, M.T. Heath, and J.W-H. Liu. Parallel Cholesky factorization on a shared-memory multiprocessor. Linear Algebra and its Appl., 77:165–187, 1986.

    Article  MATH  Google Scholar 

  18. J.A. George, M.T. Health, J.W-H. Liu, and E.G-Y. Ng. Solution of sparse positive definite systems on a shared memory multiprocessor. Technical Report CS-86-10, Dept. of Computer Science, York University, 1986. (to appear in Internat. J. Parallel Programming).

    Google Scholar 

  19. J.A. George, M.T. Health, J.W-H. Liu, and E.G-Y. Ng. Sparse Cholesky factorization on a local-memory multiprocessor. Technical Report CS-86-02, Department of Computer Science, University of Waterloo, 1986. (to appear in Siam J. Sci. Stat. Comput.).

    Google Scholar 

  20. J.A. George, M.T. Heath, J.W-H. Liu, and E.G-Y. Ng. Symbolic Cholesky factorization on a local-memory multiprocessor. Parallel Computing, 1987. (special issue, to appear).

    Google Scholar 

  21. J.A. George and J.W-H. Liu. Compact structural representation of sparse Cholesky, QR and LU factors. In R. Glowinski and J.-L. Lions, editors, Computing Methods in Applied Sciences and Engineering, VII, Elsevier Publishers B.V. (North-Holland), 1985.

    Google Scholar 

  22. J.A. George and J.W-H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

    MATH  Google Scholar 

  23. J.A. George and J.W-H. Liu. Householder reflections versus Givens rotations in sparse orthogonal decomposition. Linear Algebra and its Appl., 1986. (To appear.).

    Google Scholar 

  24. J.A. George and J.W-H. Liu. On the evolution of the minimum degree algorithm. 1987. in preparation.

    Google Scholar 

  25. J.A. George and J.W-H. Liu. An optimal algorithm for symbolic factorization of symmetric matrices. SIAM J. Comput., 9:583–593, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.A. George, J.W-H. Liu, and E.G-Y. Ng. Communication reduction in parallel sparse Cholesky factorization on a hypercube. In M.T. Heath, editor, Hypercube Multiprocessors, SIAM Publications, Philadelphia, PA., 1987.

    Google Scholar 

  27. J.A. George, J.W-H. Liu, and E.G-Y. Ng. Communication results for parallel sparse Cholesky factorization on a hypercube. 1987. (submitted to Parallel Computing).

    Google Scholar 

  28. J.A. George, J.W-H. Liu, and E.G-Y. Ng. A data structure for sparse QR and LU factors. Technical Report CS 85-16, Dept of Computer Science, University of Waterloo, 1985. (to appear in SIAM J. Sci. Stat. Comput.).

    Google Scholar 

  29. J.A. George and E.G-Y. Ng. An implementation of Gaussian elimination with partial pivoting for sparse systems. SIAM J. Sci. Stat. Comput., 6:390–409, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  30. J.A. George and E.G-Y. Ng. On the complexity of sparse QR and LU factorization of finite element matrices. 1987. (submitted to SIAM J. Sci. Stat. Comput.).

    Google Scholar 

  31. J.A. George and E.G-Y. Ng. Orthogonal reduction of sparse matrices to upper triangular form using Householder transformations. SIAM J. Sci. Stat. Comput., 7:460–472, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  32. J.A. George and E.G-Y. Ng. Symbolic factorization for sparse Gaussian elimination with partial pivoting. Technical Report CS-84-43, Department of Computer Science, University of Waterloo, 1984. (to appear in SIAM J. Sci. Stat. Comput.).

    Google Scholar 

  33. J.R. Gilbert and H. Hafsteinsson. A parallel algorithm for finding fill in a sparse symmetric matrix. Technical Report TR 86-789, Dept. of Computer Science, Cornell University, Ithaca, New York, 1986.

    Google Scholar 

  34. J.R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic operations. Technical Report TR 86-783, Dept. of Computer Science, Cornell University, Ithaca, New York, 1986.

    MATH  Google Scholar 

  35. M.T. Heath and C.H. Romine. Parallel solution of triangular systems on distributed memory-multiprocessors. Technical Report ORNL/TM-10384, Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, 1987.

    MATH  Google Scholar 

  36. J.A.G. Jess and H.G.M. Kees. A data structure for parallel L/U decomposition. IEEE Trans. Comput., C-31:231–239, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  37. H.F. Jordan. Experience with pipelined multiple instruction streams. Proc. IEEE, 72:113–123, 1984.

    Article  Google Scholar 

  38. J.W-H. Liu. A compact row storage scheme for Cholesky factors using elimination trees. ACM Trans. on Math. Software, 12:127–148, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  39. J.W-H. Liu. Computational models and task scheduling for parallel sparse Cholesky factorization. Parallel Computing, 3:327–342, 1986.

    Article  MATH  Google Scholar 

  40. J.W-H. Liu. Equivalent sparse matrix reordering by elimination tree rotations. Technical Report CS-86-12, Dept. of Computer Science, York University, November 1986.

    Google Scholar 

  41. J.W-H. Liu. Modification of the minimum degree algorithm by multiple elimination. ACM Trans. on Math. Software, 11:141–153, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  42. J.W-H. Liu. On general row merging schemes for sparse Givens transformations. SIAM J. Sci. Stat. Comput., 7:1190–1211, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  43. J.W-H. Liu. Reordering sparse matrices for parallel elimination. Technical Report CS-87-01, Dept. of Computer Science, York University, 1987.

    Google Scholar 

  44. D.P. O'Leary and G.W. Stewart. Data-flow algorithms for parallel matrix computations. Comm. Assoc. Comput. Mach., 28:840–853, 1985.

    MathSciNet  MATH  Google Scholar 

  45. S.V. Parter. The use of linear graphs in Gaussian elimination. SIAM Review, 3:364–369, 1961.

    Article  MathSciNet  Google Scholar 

  46. F.J. Peters. Sparse Matrices and Substructures. Mathematisch Centrum, Amsterdam, The Netherlands, 1980. Mathematical Centre Tracts 119.

    MATH  Google Scholar 

  47. R. Schreiber. A new implementation of sparse Gaussian elimination. ACM Trans. on Math Software, 8:256–276, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  48. A.H. Sherman. Algorithm 533. NSPIV, a FORTRAN subroutine for sparse Gaussian elimination with partial pivoting. ACM Trans. on Math. Software, 4:391–398, 1978.

    Article  Google Scholar 

  49. A.H. Sherman. On the efficient solution of sparse systems of linear and nonlinear equations. Technical Report 46, Dept. of Computer Science, Yale University, 1975.

    Google Scholar 

  50. G.W. Stewart. The economical storage of plane rotations. Numer. Math., 25:137–138, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  51. G.W. Stewart. Introduction to Matrix Computations. Academic Press, New York, 1973.

    MATH  Google Scholar 

  52. R.E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22:215–225, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  53. Z. Zlatev, J. Wasniewski, and K. Schaumburg. Y12M: Solution of large and sparse systems of linear algebraic equations. Lecture Notes in Computer Science, Vol. 121, Springer-Verlag, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter R. Turner

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

George, A. (1989). Solution of sparse systems of equations on multiprocessor architectures. In: Turner, P.R. (eds) Numerical Analysis and Parallel Processing. Lecture Notes in Mathematics, vol 1397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0085717

Download citation

  • DOI: https://doi.org/10.1007/BFb0085717

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51645-3

  • Online ISBN: 978-3-540-46732-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics