Skip to main content
Log in

Intracoronary brachytherapy in the cath lab

Intrakoronare Brachytherapie im Katheterlabor: Dosimetrie, Technologie und Sicherheitserwägungen

Physics dosimetry, technology and safety considerations

  • Published:
Herz Aims and scope Submit manuscript

Abstract

Vascular brachytherapy for prevention of restenosis is an evolving field. In recent years numerous animal experiments and feasibility clinical pilot trials have demonstrated that low doses of radiation when applied following intracoronary intervention reduce neointimal proliferation, prevent vessel contraction and alter the restenosis rate. This novelty introduced new aspects of vascular radiation biology, radiation physics, radiation safety and new devices to deliver the radiation intraluminally.

A variety of beta or gamma isotopes for use in vascular brachytherapy has been suggested. These isotopes are delivered intracoronary to provide the therapeutic dose to the target cell. Two basic platforms of delivery are available: catheter-based systems and radioactive stents. Many practical issues and considerations are related to the implementation of this technology in the cardiac catheterization laboratory. Among these are questions about dosimetry, shielding, handling and disposal of radioisotopes, certification for potential users, expense, which patients should receive the treatment? And who should be the users? and above all the safety and the efficacy of this procedure. These and other issues related to this new exciting field are discussed.

Zusammenfassung

Das Gebiet der vaskulären Brachytherapie zur Verhinderung von Restenosen entwickelt sich zusehends. In den vergangenen Jahren haben zahlreiche experimentelle Untersuchungen und klinische Pilotstudien gezeigt, daß niedrigdosierte Strahlung, wenn unmittelbar nach der Koronarintervention appliziert, die Neointimaproliferation, den Schrumpfungsprozeß der Gefäße und somit die Restenoserate reduziert. Diese Innovation führte zu neuen Erkenntnissen über die Bestrahlungsbiologie von Gefäßen, der Strahlenphysik, Strahlensicherheit und zu neuen Geräten, die speziell zur intraluminalen Strahlenapplikation entwickelt wurden. Zur vaskulären Brachytherapie wurde eine Vielzahl von Beta- oder Gammastrahlern vorgeschlagen. Diese radioaktiven Isotope werden intrakoronar verabreicht, um die therapeutische Dosis gezielt an die betreffenden Zellen zu bringen. Hierzu stehen prinzipiell zwei Anwendungsmöglichkeiten zur Verfügung: Kathetersysteme und radioaktive Stents. Viele praktische Gegebenheiten und Erwägungen führen zur Integration dieser Technologie im Herzkatheterlabor. Hierunter fallen die Fragen nach Dosimetrie, Abschirmung, Handhabung und Entsorgung der Radioisotope, die Genehmigungsverfahren, potentielle Anwender, Kosten und Indikationsstellung, vor allem aber die Sicherheit und Wirksamkeit dieser Verfahren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amols HI, Reinstein LE, Weinberger J. Dosimetry of a radioactive coronary balloon dilatation catheter for treatment of neointimal hyperplasia. Med Phys 1996;23:1783–8.

    Article  PubMed  CAS  Google Scholar 

  2. Amols HR, Zaider M, Weinberger J, et al. Dosimetric considerations for catheter-based beta and gamma emitters in the therapy of neointimal hyperplasia in human coronary arteries. Int J Radiat Oncol Biol Phys 1996;36:913–21.

    PubMed  CAS  Google Scholar 

  3. Carter JC, Laird RJ, Bailey LR, et al. Effects of endovascular radiation from a (particle-Emitting stent in a porcine coronary restenosis model a dose-response study. Circulation 1996;94: 2364–8.

    PubMed  CAS  Google Scholar 

  4. Condado JA, Waksman R, Gurdiel O, et al. Long-term angiographic and clinical outcome After percutaneous transluminal coronary angioplasty and intracoronary radiation therapy in humans. Circulation 1997;96:727–32.

    PubMed  CAS  Google Scholar 

  5. Janicki C, Duggan DM, Coffey, C. W., et al. Radiation dose from a phosphorous-32 impregnated wire mesh vascular stent. Med Phys 1997;24:437–45.

    Article  PubMed  CAS  Google Scholar 

  6. King SB, III, Wiliams DO, Prakash Chhougule J, et al. Endovascular beta radiation to reduce restenosis after coronary balloon angioplasty results of the beta energy restenosis trial (B.E.R.T.). Circulation 1998;97:2025–30.

    PubMed  Google Scholar 

  7. Nath, R, Amols H, Coffey C, et al. Intravascular brachytherapy physics: report of the AAPM Radiation Task Group No. 60. Med Phys (in press).

  8. Teirstein PS, Massullo V, Jani S, et al. Catheter-based radiotherapy to inhibit stenosis after coronary stenting. N Engl J Med 1997;336:1697–703.

    Article  PubMed  CAS  Google Scholar 

  9. Verin V, Popowski Y, Urban P, et al. Intra-arterial beta irradiation prevents neointimal hyperplasia in a hypercholesterolemic rabbit restenosis model. Circulation 1995;92:2284–90.

    PubMed  CAS  Google Scholar 

  10. Verin V, Urban P, Popowski Y, et al. Feasibility of intracoronary β-irradiation to reduce restenosis after balloon angioplasty, a clinical pilot study. Circulation 1997;95:1138–44.

    PubMed  CAS  Google Scholar 

  11. Waksman R, Azibaid A, Chan RC, et al. The importance of cenering for intracoronary radiation therapy: An ultrasound-dosimetry analysis for gamma and beta emitters. Circulation 1997;96:I-193:1068.

    Google Scholar 

  12. Waksman R, Robinson K, Crocker I, et al. Intracoronary low dose β-irradiation inhibits neointima formation after coronary artery balloon injury in the swine restenosis model. Circulation 1995;92:3025–31.

    PubMed  CAS  Google Scholar 

  13. Waksman R, Robinson KA, Crocker IR, et al. Endovascular lowdose irradiation inhibits neointima formation after coronary artery balloon injury in swine. A possible role for radiation therapy in restenosis prevention. Circulation 1995;91:1533–9.

    PubMed  CAS  Google Scholar 

  14. Waksman R, Robinson KA, Crocker IR, et al. Intracoronary radiation before stent implantation inhibits neointima formation in stented porcine coronary arteries. Circulation 1995;92:1383–6.

    PubMed  CAS  Google Scholar 

  15. Waksman R, Rodriguez JC, Robinson KA, et al. Effect of intravascular irradiation on cell proliferation, apoptosis and vascular remodeling after balloon overstretch injury of porcine coronary arteries. Circulation 1997;96:1944–52.

    PubMed  CAS  Google Scholar 

  16. Waksman R. Response to radiation therapy in animals restenosis models. Semin Intervent Cardiol 1997;2:95–101.

    CAS  Google Scholar 

  17. Wiedermann JG, Marboe C, Amols H, et al. Intracoronary irradiation markedly reduces neointimal proliferation after balloon angioplasty in swine: Persistent benefit at 6-month follow-up. J Am Coll Cardiol 1995;25:1451–6.

    Article  PubMed  CAS  Google Scholar 

  18. Wiedermann JG, Marboe C, Schwartz A, et al. Intracoronary irradiation reduces restenosis after balloon angioplasty in a porcine model. J Am Coll Cardiol 1994;23:1491–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Waksman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waksman, R. Intracoronary brachytherapy in the cath lab. Herz 23, 401–406 (1998). https://doi.org/10.1007/BF03043606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043606

Key Words

Schlüsselwörter

Navigation