Skip to main content
Log in

Methylene blue prevents neurodegeneration caused by rotenone in the retina

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

An experimental optic neuropathy model was used to test the hypothesis that methylene blue may protect the retinal ganglion cell layer from neurodegeneration caused by rotenone. Rotenone is a widely used pesticide that inhibits complex I, the first enzyme of the mitochondrial respiratory chain. Complex I dysfunction is linked to the degeneration of retinal ganglion cells in Leber’s optic neuropathy. Methylene blue is a reduction-oxidation agent that can act as a powerful antioxidant and also as an enhancer of the electron transport chain, preventing formation of mitochondrial oxygen free radicals and promoting oxygen consumption. The neurodegeneration of the retina was studied in mice with intravitreal microinjection of rotenone alone, or in combination with increasing doses of methylene blue, in one eye, and the vehicle in the contralateral control eye. The effect of rotenone and rotenone plus methylene blue was investigated using two histological stains, complex I and Nissl, and two measurements, morphometric layer thickness and non-biased stereological cell counts. Rotenone induced neurodegeneration in the retinal ganglion cell layer 24 h after injection, as indicated by significant reductions in both the thickness and cell numbers of the retinal ganglion cell layer of eyes microinjected with rotenone as compared to the control eyes. This neurodegeneration was prevented in a dose dependent manner by the injection of methylene blue along with rotenone. It was concluded that rotenone-induced degeneration in the ganglion cell layer can be prevented by intravitreal injection of methylene blue.In vitro experiments showed that methylene blue is both a powerful antioxidant as well as an enhancer of cellular oxygen consumption and is able to reverse the oxidative stress and decrease in oxygen consumption induced by rotenone in brain homogenates. The findings suggest that methylene blue may be a promising neuroprotective agent in optic neuropathy and perhaps other neurodegenerative diseases caused by mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases.Biochim. Biophys. Acta (BBA) — Bioenergetics 1366, 211–223.

    Article  CAS  Google Scholar 

  • Betarbet R, TB Sherer, G MacKenzie, M Garcia-Osuna, AV Panov and JT Greenamyre (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease.Nat. Neurosci. 3, 1301–1306.

    Article  PubMed  CAS  Google Scholar 

  • Bradberry SM (2003) Occupational methaemoglobinaemia. Mechanisms of production, features, diagnosis and management including the use of methylene blue.Toxicol. Rev. 22, 13–27.

    Article  PubMed  CAS  Google Scholar 

  • Brown MD, AS Voljavec, MT Lott, I MacDonald and DC Wallace (1992) Leber’s hereditary optic neuropathy: A model for mitochondrial neurodegenerative diseases.FASEB J. 6,2791–2799.

    PubMed  CAS  Google Scholar 

  • Callaway NL, PD Riha, KM Wrubel, D McCollum and F Gonzalez-Lima (2002) Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats.Neurosci. Lett. 332, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Callaway NL, PD Riha, AK Bruchey, Z Munshi and F Gonzalez-Lima (2004) Methylene blue improves brain oxidative metabolism and memory retention in rats.Pharmacol. Biochem. Behav. 77, 175–181.

    Article  PubMed  CAS  Google Scholar 

  • Chen TA, F Yang, GM Cole and SO Chan (2001) Inhibition of caspase-3-like activity reduces glutamate induced cell death in adult rat retina.Brain Res. 904, 177–188.

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system.Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death.Trends Neurosci. 18, 58–60.

    Article  PubMed  CAS  Google Scholar 

  • Cleeter MW, JM Cooper and AH Schapira (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement.J. Neurochem. 58, 786–789.

    Article  PubMed  CAS  Google Scholar 

  • Clifton J and JB Leikin (2003) Methylene blue.Am. J. Ther. 10, 289–291.

    Article  PubMed  Google Scholar 

  • Coyle JT and P Puttfarcken (1993) Oxidative stress, glutamate, and neurodegenerative disorders.Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  • Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview.Biochim. Biophys. Acta (BBA) — Bioenergetics 1364, 222–235.

    Article  Google Scholar 

  • Drager UC and JF Olsen (1981) Ganglion cell distribution in the retina of the mouse. Invest.Ophthalmol. Vis. Sci. 20, 285–293.

    CAS  Google Scholar 

  • Dreyer EB, D Zurakowski, RA Schumer, SM Podos and SA Lipton (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma.Arch. Ophthalmol. 114, 299–305.

    PubMed  CAS  Google Scholar 

  • Duarte CB, IL Ferreira, PF Santos, AL Carvalho, PM Agostinho and AP Carvalho (1998) Glutamate in life and death of retinal amacrine cells.Gen. Pharmacol. 30, 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lima F and A Cada (1994) Cytochrome oxidase activity in the auditory system of the mouse: a qualitative and quantitative histochemical study.Neuroscience 63, 559–578.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lima F and A Cada (1998) Quantitative histochemistry of cytochrome oxidase activity, In:Cytochrome Oxidase in Neuronal Metabolism and Alzheimer’s Disease (Gonzalez-Lima F, Ed.) (Plenum Press: New York, NY), 55–90.

    Google Scholar 

  • Gonzalez-Lima F and D Jones (1994) Quantitative mapping of cytochrome oxidase activity in the central auditory system of the gerbil: a study with calibrated activity standards and metal-intensified histochemistry.Brain Res. 660, 34–49.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lima F, J Valla and S Matos-Collazo (1997) Quantitative cytochemistry of cytochrome oxidase and cellular morphometry of the human inferior colliculus in control and Alzheimer’s patients.Brain Res. 752, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lima F, J Valla and L Jorandby (1998) Cytochrome oxidase inhibition in Alzheimer’s disease, In:Cytochrome Oxidase in Neuronal Metabolism and Alzheimer’s Disease (Gonzalez-Lima F, Ed.) (Plenum Press: New York, NY), 171–200.

    Google Scholar 

  • Gunasekar PG, AG Kanthasamy, JL Borowitz and GE Isom (1995) NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implications for cell death.J. Neurochem. 65, 2016–2021.

    Article  PubMed  CAS  Google Scholar 

  • Hassan HM and I Fridovich (1979) Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds.Arch. Biochem. Biophys. 196, 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Howell N (1998) Leber hereditary optic neuropathy: Respiratory chain dysfunction and degeneration of the optic nerve.Vision Res. 38, 1495–1504.

    Article  PubMed  CAS  Google Scholar 

  • Jung C, CMJ Higgins and Z Xu (2002) A quantitative histochemical assay for activities of mitochondrial electron transport chain complexes in mouse spinal cord sections.J. Neurosci. Methods 114, 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Kelner MJ, R Bagnell, B Hale and NM Alexander (1988) Potential of methylene blue to block oxygen radical generation in reperfusion injury.Basic Life Sci. 49, 895–898.

    PubMed  CAS  Google Scholar 

  • Kupfer A, C Aeschlimann and T Cerny (1996) Methylene blue and the neurotoxic mechanisms of ifosfamide encephalopathy.Eur. J. Clin. Pharmacol. 50, 249–252.

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, S Pietri, M Culcasi and J Bockaert (1993) NMDA-dependent superoxide production and neurotoxicity.Nature 364, 535–537.

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, FP Chou, TH Tseng, MH Hsieh, MC Lin and CJ Wang (2002) Hibiscus protocatechuic acid or esculetin can inhibit oxidative LDL induced by either copper ion or nitric oxide donor.J. Agric. Food Chem. 50, 2130–2136.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl PE and KE Oberg (1961) The effect of rotenone on respiration and its point of attack.Exp. Cell Res. 23, 228.

    Article  PubMed  CAS  Google Scholar 

  • Martinez JL Jr, RA Jensen, BJ Vasquez, T McGuinness and JL McGaugh (1978) Methylene blue alters retention of inhibitory avoidance responses.Physiol. Psychol.6, 387–390.

    CAS  Google Scholar 

  • Mattson MP (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurode-generative disorders.Neuromolecular Med. 3, 65–94.

    Article  PubMed  CAS  Google Scholar 

  • Mayer B, F Brunner and K Schmidt (1993) Inhibition of nitric oxide synthesis by methylene blue.Biochem. Pharmacol. 45, 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Naylor GJ, B Maton, SE Hopwood and Y Watson (1986) A two-year double-blind crossover trial of the prophylactic effect of methylene blue in manic-depressive psychosis.Biol. Psychiatry 21, 915–920.

    Article  PubMed  CAS  Google Scholar 

  • Nobrega J, R Raymond, L DiStefano and WM Burnham (1993) Long-term changes in regional brain cytochrome oxidase activity induced by electroconvulsive treatment in rats.Brain Res. 605, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • O’Leary JL, J Petty, AB Harris and J Inukai (1968) Supravital staining of mammalian brain with intra-arterial methylene blue followed by pressurized oxygen.Stain Technol. 43, 197–201.

    PubMed  CAS  Google Scholar 

  • Peter C, D Hongwan, A Kupfer and BH Lauterburg (2000) Pharmacokinetics and organ distribution of intravenous and oral methylene blue.Eur. J. Clin. Pharmacol. 56, 247–250.

    Article  PubMed  CAS  Google Scholar 

  • Richardson KC (1969) The fine structure of autonomic nerves after vital staining with methylene blue.Anat. Rec. 164, 359–377.

    Article  PubMed  CAS  Google Scholar 

  • Riha PD, AK Bruchey, DJ Echevarria and F Gonzalez-Lima (2005) Memory facilitation by methylene blue: dose-dependent effect on behavior and brain oxygen consumption.Eur. J. Pharmacol. 511, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Salaris SC, CF Babbs and CE Voorhees III (1991) Methylene blue as an inhibitor of superoxide generation by xanthine oxidase: a potential new drug for the attenuation of ischemia/reperfusion injury.Biochem. Pharmacol. 42, 499–506.

    Article  PubMed  CAS  Google Scholar 

  • Schapira AHV (1998) Human complex I defects in neurodegenerative diseases.Biochim. Biophys. Acta (BBA) — Bioenergetics 1364, 261–270.

    Article  CAS  Google Scholar 

  • Sherer TB, JH Kim, R Betarbet and JF Greenamyre (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and [alpha]-synuclein aggregation.Exp. Neurol. 179, 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Singer TP and RR Ramsay (1994) The reaction sites of rotenone and ubiquinone with mitochondrial NADH dehydrogenase.Biochim. Biophys. Acta (BBA) — Bioenergetics 1187, 198–202.

    Article  CAS  Google Scholar 

  • United States National Toxicology Program (1990) Chemical Status Report. NTP Chemtrack System.

  • Valla J, K Chen, JD Berndt, F Gonzalez-Lima, SR Cherry, D Games and EM Reiman (2002) Effects of image resolution on autoradiographic measurements of posterior cingulate activity in PDAPP mice: implications for functional nrain imaging studies of transgenic mouse models of Alzheimer’s disease.NeuroImage 16, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Visarius TM, JW Stucki and H Bernhard (1997) Stimulation of respiration by methylene blue in rat liver mitochondria.FEBS Lett. 412, 157–160.

    Article  PubMed  CAS  Google Scholar 

  • Wainwright M and KB Crossley (2002) Methylene blue—a therapeutic dye for all seasons?J. Chemother. 14, 431–443.

    PubMed  CAS  Google Scholar 

  • Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity.Trends Neurosci. 12, 94–101.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, D Jones and F Gonzalez-Lima (2002) Mouse model of optic neuropathy caused by mitochondrial complex I dysfunction.Neurosci. Lett. 326, 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, O Marcillat, C Giulivi, L Ernster and KJ Davies (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase.J. Biol. Chem. 265, 16330–16336.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gonzalez-Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., C. Rojas, J. & Gonzalez-Lima, F. Methylene blue prevents neurodegeneration caused by rotenone in the retina. neurotox res 9, 47–57 (2006). https://doi.org/10.1007/BF03033307

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033307

Keywords

Navigation