
Thurston's approach to the Riemann 
Mapping Theorem via circle packings 
was completed by Rodin and Sullivan 
[Rodin-Sull]. Given a bounded, simply- 
connected domain f~ in the complex 
plane, the goal is to approximate a Rie- 
mann mapping that takes the open unit 
disk D onto f/ by circle packing map- 
pings. One chooses a penny size, say 
l/i, and fills [1 as nearly as possible with 
a connected portion Pi of the hexago- 
nal penny packing /t,,., where the un- 
derlying triangulation Ki defined by P, 
is a closed topological disk. The Dis- 
crete Uniformization Theorem yields a 
packing PK, of the open unit disk D by 
circles whose tangencies correspond ex- 
actly to the edges in K~ and whose outer, 
or boundary, circles are all tangent to 
the boundary circle of D. The corre- 
spondence between the circles of PK, 
and those of P/can be used to define a 
mapping from most of D to most of f~. 
The Rodin-Sullivan Theorem claims that, 
after a minor normalization, these par- 
tial mappings converge to a Riemann 
mapping from D onto f~. (Figure 8) 

The original proof made strong use 
of the combinatorics of the hexagonal 
penny-packing. Other authors have re- 
moved many of the restrictions in- 
volved. The best result to date seems 
to be that of He and Schramm (see the 
references in this book). 
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M 
ost ten-year-old boys and girls 
run around a lot. Many play 
video games. Some accidentally 

download computer viruses. And quite 

a few invent secret codes, their very own 
means of disguising their communica- 
tions from parents and peers. Children 
quickly learn the rules of cryptography: 
their techniques must be efficient and 
their methods must be able to be un- 
done, too. (Budding cryptanalysts, who 
spend their efforts breaking the systems 
of their classmates, are scarcer than 
young cryptographers.) It's the bread 
and butter of cryptography, the en- 
crypting, and there's a popular mythol- 
ogy to Top Secret ciphers and spy in- 
t r igue-with the television shows with 
the strong encryption that somehow al- 
ways manages to get broken. Today we 
are inundated with media pronounce- 
ments of strong (or strongest/) protec- 
tions with such ubiquitous phrases as, 
"128 bit encryption." It seems that every- 
one does it or claims to do it. Even I 
can do it, with the Captain Midnight de- 
coder badge that I bought on e-bay. But 
exactly how does it all work? Cryptog- 
raphy is not just the latest trend, like the 
hula hoop, Betamax, and the Spice Girls. 
It's here, it's not going away, and some- 
one needs to know how it really 
works--and if it's really strong. 

Ah, but a man's reach should exceed 
his grasp, or what's an SSL for? 

An excellent first step toward the un- 
derstanding of the black boxes of (com- 
mercial) encryption is to work through 
Introduction to Cryptography with Cod- 
ing Theory, second edition, by Wade 
Trappe and Lawrence Washington 
(which we dub WaTr for purely metri- 
cal purposes). Read it and you'll learn 
the answer to that mysterious question, 
"What's [in] that SSL thing?" You may 
still fumble, though, when your friends 
ask you, "Should I really trust ama- 
zon.com with my credit card number?" 
An introduction to cryptology, the sum 
of cryptography and the cryptanalysis, 
usually starts with a fundamentals class 
at the elective undergraduate or early 
graduate level. WaTr fills about two of 
these courses, two semesters worth, and 
it's aimed at an audience of computer 
science, engineering and mathematics 
students. But this text is not just replete 
with the classical ciphers--the Vi- 
gen~res and the Enigma's but is full of 
the flotsam and jetsam that fill the ether 
about them, those cryptographic prim- 
itives and applications (like the key dis- 
tribution protocols and the digital sig- 
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natures) that are the backbone of  the 
few high-profile protocols upon which 
so much of  today's data security rests. 

WaTr provides pedagogy in two dis- 
tinct voices. Unfortunately, this duality 
is often distinguished by the strengths 
of  the expositions. As we are told in 
the preface, WaTr plans to "cover a 
broad selection of  topics from a math- 
ematical point of  view." To be com- 
prehensive is a near Herculean labor. 
Some volumes, like [2] and [6], do very 
well to touch upon almost all of the 
notable features of cryptography today, 
but they are not texts for a first lesson 
in the mechanics of how and why and 
the mathematics behind it all. WaTr fea- 
tures a sound balance of methods and 
attacks; it is a pleasure to read. There 
are the occasional proofs of  the math- 
ematical statements, when the proofs 
are elementary, but WaTt is about a 
wider introduction. Certainly, a lot lurks 
hidden beneath the surface, including 
the hidden Markov models. Trappe and 
Washington fittingly point to many of 
the deeper  ideas, especially in the the- 
ory of  elliptic curves, and they keep 
the reader both aware and enticed for 
further study. On the down side, the 
privation of  implementation details and 
implementation issues in WaTr is a real 
loss for the student who wants to run 
with the encryption ball; the devil, 
after all, is in the cryptographic small 
print. There are exceptions, though, 
and WaTr does include the very clever 
work of  [4]. But this is a first text and, 
as such, serves well. 

This second edition of WaTr features 
several important additions to the first 
edition, including identity-based public 
key cryptography, an elegant construc- 
tion which holds substantial promise in 
future applications. Significant cryptan- 
alytic advances in the theory of hash 
functions are included. The study of  
hash functions (and collision-finding) is 
experiencing a revival due to exciting 
work beginning with [3] and culminat- 
ing in [7]. Thanks to these efforts, we ' re  
now looking for new hash algorithms 
because our faith in the old ones has 
been ruffled. Also new to the second 
edition of WaTr is a chapter on lattice 
methods (including the Lenstra-Lenstra- 
Lovasz method for finding short vec- 
tors). Notable by its absence, though, 
in both the first and second editions of  
WaTr is the Merkle-Hellman Knapsack 

scheme, the Icarus of public key cryp- 
tosystems. Knapsack was all the rage 
in the late 1970s: it was elegant and 
based upon  a known NP-hard problem 
(unlike the RSA system). Shamir, in 
1982, shook the foundation and cer- 
tainly the confidence of the young field 
of  modern cryptography by cracking 
i t - -and  in so doing changed the face 
of  (public key) cryptography and crypt- 
analysis to this day. The story of Knap- 
sack is part of the history. It makes for 
great reading, it's high drama, and it 
provides a strong lesson. But it's not in 
WaTr and it should be. 

What is in WaTr and is a highlight 
of the text is the gentle introduction to 
DES, (which was) the Data Encryption 
Standard. WaTr presents it slowly, a few 
rounds at a time. Block ciphers, like 
DES, 3DES ("triple DES") and Rijndael 
(the new standard, the Advanced En- 
cryption Standard) are the load-bearers 
of data encryption. They are each com- 
posed of rounds, and a single round is 
a structured shaking of the input. Start- 
ing with the plain text input to the first 
round and repeated on the output of 
the previous round, a block cipher is 
designed with enough rounds so that 
the result, the cipher text, is jumbled 
enough- -mean ing  that the influence of 
the input on the output (and vice versa) 
is fully diffused. The mixing steps are 
usually a combination of permutations 
and substitutions and some non-linear 
lookups (DES has some famous S-boxes 
that do this) all the while being de- 
signed to be invertible so plain text can 
be recovered. WaTr explains the work- 
ings of DES in parallel with the crypt- 
analytic method of differential crypt- 
analysis. By so doing, it becomes 
clear(er) why DES has 16 rounds. The 
discourse does get a bit technical. How- 
ever, the parallel presentation is well 
worth the efR)rt of careful study. The 
best cryptographic algorithm designs 
are structured around what attacks are 
known and then laid out to be resistant 
to them. 

For symmetric key protocols, like 
block ciphers, it's all about the mud- 
dling and the repetition of the 

The paradigm of "easy to do but 
hard to undo" lies at the heart 

of c~ptography. 

processes. For asymmetric schema, as 
in public key cryptography, designs are 
predicated upon mathematical prob- 
lems that are "easy" (computationally 
efficient) to perform but believed to be 
"hard" (computationally infeasible) to 
invert--without some extra piece of 
knowledge, a key. These problems are 
called trapdoor one-way functions and 
are not to be confused with one-way 
functions for which there is no key to 
undo them. (Hash functions are one- 
way functions.) There is no real proof  
that trapdoor one-way functions exist 
since obtaining lower bounds for these 
kinds of complexities seems near im- 
possible. There is faith, based upon  
many years of very limited success, in 
a few select problems: the discrete log- 
arithm problem and that of  finding, for 
some e, an e-th root modulo a number  
of unknown factorization. 

Discrete logarithm problems (dlp's), 
as involved in, for example, the classi- 
cal Diffie-Hellman key agreement pro- 
tocol, take a form such as: find x if 

7 x ~ 2434711235764822669040730 
(rood 4083497104378553871280549). 

WaTr's treatment of the discrete log 
problem and approaches to solve it, the 
Pohlig-Hellman algorithm and the index 
calculus, are exemplary for first-year stu- 
dents. The hard (but nevertheless toy- 
sized) dlp above can be solved on your 
laptop. When the modulus has several 
hundred digits, things get very tough. 
(The index calculus approach, while 
sub-exponential complexity, does not 
scale well enough to be efficient.) 

The RSA architecture involves raising 
a message, m, to a fixed known power, 
e, modulo a number  n whose factor- 
ization is a secret (and e and n are rel- 
atively prime). A result may look some- 
thing like this (for e = 31): 

m31 
1970517852344637324142632145 
5642097240677633038639787310457 
O22491789 
(mod 495960937377360 
6049203836057449876027011013993 
99359259262820733407167). 

Breaking RSA is about finding m. If 
n can be factored, this is easily ac- 
complished. (Raise both sides of the 
equation above to the power  d where 

d -1 --- e (mod 4~(n)). 

�9 2007 Springer Science+ Business Media, Ins,, Volume 29. Number 3, 2007 6 7  



That recovers m. The proof is a simple 
application of Euler's generalization of 
Fermat's Little Theorem.) It is unknown 
if there is a way to find m that is more 
efficient than factoring the modulus. 
Since factoring special types of large 
numbers is believed to be hard, the RSA 
system, with a sufficiently large, hard 
modulus is currently considered secure. 
(The example presented here is, hope- 
fully, a small step towards dispelling 
the common misconception that an 
RSA modulus need be the product of 
two large primes. For efficiency, it 
ought to be---or close. It need not be, 
though.) WaTr gives a quick overview 
of some factoring techniques; enough 
to convince the would-be RSA code- 
breaker that things can be tremen- 
dously challenging. 

The questions of the (computational) 
equivalence of the RSA problem and of 
factoring--and of the discrete logarithm 
problem and the Diffie-Hellman proto- 
co l - a r e  amongst the most important 
open issues in cryptology today. 
Progress has been made on the latter 
question (see [5]) in the affirmative di- 
rection. On the former, the recent work 
is less than convincing. 

WaTr really shines in its initiation 
into the world of elliptic curves and el- 
liptic curve cryptography. From a sim- 
ple introduction to the group law to H. 
Lenstra's beautiful elliptic curve factor- 
ing method (which can solve the RSA 
question in this review) to the elliptic 
curve analogue of the discrete logarithm 
problem and the Diffie-Hellman proto- 
col, WaTr provides a fine rendering for 
the initiate. The elliptic curve one-way 
trapdoor function is simple: given an el- 
liptic curve E defined over a finite field, 
a point P on E and k some positive 
integer, find k given k P  (where k P  = 

P + P + P + .  �9 . + P ,  ktimes). Again, 
it seems (computationally) difficult--or 
infeasible--to do this for large enough 
carefully chosen examples. There's a lot 
of data security (and commercial prod- 
ucts) banking on that. 

There are unfortunate omissions in 
WaTr. There's no real discussion of (al- 
gorithmic) complexity where it may 
have been well-placed to provide the 
reader with a sense of appropriate key 
sizes and protocol (and attack) strength. 
And there's the sporadic lack of the 
sense of largeness, the why's of w h y  

are  th ings  l ike this?. More generally, 

what is incidental and what is of real 
import in the digital world is not always 
clear. These gaps, though, are alleviated 
in part by an assortment of excellent 
(and detailed) end-of-chapter exercises 
and computer problems that allow and 
encourage the reader to identify some 
of the subtleties and gain a deeper ap- 
preciation of the why's. 

WaTr skips almost the whole field 
of stream ciphers. That's a shame. 
Stream ciphers are a major component 
of encryption technology today. And 
WaTr features only a cursory look at 
linear feedback shift registers, the pri- 
mary constituent of most stream ciphers 
over the past century and many very 
good random-number generators. Lin- 
ear feedback shift registers (and their 
associated tap polynomials) are rich 
in mathematical theory and can be 
designed and combined to provide 
very satisfactory output. Bad random- 
number generators, at least for crypto- 
graphic purposes, are based upon sim- 
ple linear congruential generators of 
the form 

x~ 7 =-- A x , _  1 q- B (mod m) 

where m is fixed and A and B (and x0) 
are unknowns (but chosen so that the 
period of the generator is large). One 
can easily deduce the next "randomly" 
generated number from knowledge of 
the previous three--and this predictabil- 
ity makes for a very bad random-num- 
ber generator. (Yet this is how many 
r a n d  functions work!) Stream ciphers are 
needed for real time encryption when 
you can't wait for a whole block of plain 
text to arrive before you use your block 
cipher. Stream ciphers aren't just for 
voice communication anymore. 

Cryptography sells, from the great 
propaganda of "the only provably se- 
cure system" (one-time pads) to the in- 
troduction of quantum cryptography. 
Using principles of quantum mechanics 
for cryptographic applications is an idea 
now a few decades o l d - a n d  remains 
ever intriguing. It also makes for great 
press. Most notable among quantum 
methods is the key exchange protocol 
introduced by Bennett and Brassard 
which allows legitimate participants to 
(probabilistically) recognize the exis- 
tence of an eavesdropper on their 
communication. It's a lovely idea that 
requires substantial overhead (a chan- 
nel so clean that a photon in transit is 

undisturbed). WaTr presents the ideas, 
this glimpse of a possible future with 
quantum cryptography and with quan- 
tum computers (if substantial ones can 
ever be built). Then, with Shor's algo- 
rithm, the pre-eminent quantum com- 
putational cryptanalytic tool, most 
everything would change for security, 
for the Internet, and for cryptology-- 
leading us to wonder, in the words of 
Buffy, "Where do we go from here?" 

A world of post-quantum cryptogra- 
phy is being studied in anticipation of 
one plausible future. Non-abelian ap- 
proaches have been suggested which 
do not seem to succumb to quantum 
attacks. Though such ideas are not in 
WaTr, for they are still in their early de- 
velopment, these considerations are 
providing new avenues of investigation. 
([1] offers an analogue of the Diffie-Hell- 
man key establishment protocol 
wherein, instead of a discrete logarithm 
problem, the restricted conjugacy 
search problem serves as the trapdoor 
one-way function.) 

WaTt tries to cover a lot: the past, 
the present, and the (uncertain) future. 
It is occasionally uneven in its mathe- 
matical level, the knowledge expected 
of the reader. The Information Theory 
and the Error Correcting Codes chap- 
ters are not as carefully composed as 
much of the rest of the book and 
do not have the same (encouraging) 
instructional rhythm. The latter part 
could benefit from some compression 
and reordering, and the Information 
Theory section could afford some ex- 
panded coverage of language recogni- 
tion. (How does your computer know 
an acceptable decryption when it finds 
one?) 

WaTr is the best book of its kind. 
Appendices of Matlab, Maple, and 
Mathematica exercises support the 
rhetoric of the individual chapters be- 
cause in cryptology small examples can 
give a false sense of security. We can 
quibble with what's not in WaTr, but 
you can't do it all at once. And what 
WaTt does is almost always done well. 
To do it all--that would be as daunt- 
ing as the task of breaking "128 bit en- 
cryption," whatever that is. 
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i 
t was an uninteresting assignment, 
except  for the tenth problem: Evalu- 
ate 

~ sin x 
) - -  d x .  

x 

I r emember  thinking, "You can' t  do 
that." Then I f igured it out. It was one  
of those mathematical  moments  that 
makes  you say "wow." Paul J. Nahin's  
book,  Dr. Euler's Fabulous Formula: 
Cures Many  Mathematical  Ills, is filled 
with such moments .  The book,  like 
its title and cover, is clever, creative, 
and unique.  It contains every short  
story Nahin can think of that uses 
e =i + 1 = 0, plus a few that don't .  You 
might know that Euler's formula was 
one  of the most  frequently cited "great 
equations," according to a poll  con- 
duc ted  by  Physics World in 2004. In 
1990, readers  of The Mathematical  In- 
telligencer voted  it the most beautiful 
of  24 formulas, with a score of 7.7/10. 
Why did this equat ion receive such a 
high score? Many peop le  cite its sim- 
plicity and brevity, as well  as the con- 
nection be tween  five important  con- 
stants in mathematics.  Though there are 
dissenters, most mathematicians agree: 
this formula needs  no introduction. 

Nahin has a gift for recognizing good  
stories and has put together  a collection 
of mathematical  "tales" about  Euler's 
formula that wou ld  make a fine addi-  
tion to a differential equations or com- 
plex analysis class. The reader  should, 
however,  be forewarned:  al though the 
back cover  informs us that the book  is 
"accessible to any reader  with the 
equivalent  of the first two years of col- 
lege mathematics," to read and enjoy 
this book,  most readers will need  more 
mathematical maturity. In addition, 
though Euler's formula may need  no in- 
troduction, applications of Euler's for- 
mula need  mot iva t ion - -and  they don' t  
always get it in this book.  

Many of the formulas and computa- 
tions included are among the highlights 
of a typical complex analysis course 
(Wallis's formula, for example). There are 
also many stories that wilt be new to 
readers. There is an account of the Gibbs 
phenomenon,  which is a story with a fas- 
cinating history. (A longer version of this 
history, without Nahin's biography of the 
overlooked Henry Wilbraham, appeared  
in an article by Edwin Hewitt and 
Robert E. Hewitt in 1979.) A wonderful  

chapter  titled "Vector Trips" features R. 
Bruce Crofoot's sto W about  his dog 
Rover. Crofoot runs a pretty compli-  
cated path, which he sketches for the 
reader, each morning. He is the proud 
owner  of a well- trained dog who  always 
runs exactly one foot to his owner 's  
right. Given the path, the owner,  and 
the dog, it turns out  that Crofoot runs 
farther than Rover. The quest ion is: 
How much farther did Crofoot run? I 
l iked the article when  I read it in Math- 
ematics Magazine and I l iked it here 
too. It's not really an appl icat ion of 
Euler's formula, but  it is a nice use of 
complex  numbers  and vectors. 

On the other hand, the discussion of 
the vibrating string p rob lem (as well as 
a deve lopment  of a solut ion to the wave 
equation)  really does  use the fact that 
d x = cos x + i sin x in an essential way. 
This serves as the introduction to the 
sto W of what  "was p robab ly  (almost 
certainly) the first 'Fourier series'." 
When  you think of Fourier series you 
probably  don' t  think of funny stories, 
but in Nahin's hands they become  
amusing. He presents Euler's "remark- 
able claim" that 

r r - t  _ ~  sin(nob 

2 / '  n 

sin(2t) sin(3ob 
= sin(t) + - -  + - -  + . . . .  

2 3 

As Nahin points  out, this is indeed  re- 
markable ,  in part because  it is not true 
(check out what  happens  at t = 0). But 
now Nahin has your  attention; now you 
should  want  to know the story beh ind  
Euler's claim. 

Other stories would  have benefi t ted 
from a little motivation. Nahin presents  
the "beautiful formula" 

~ ( - 1 ) n + l l / n  2 = ~-2/12 
n =  1 

and Euler's result "which made  him 
wor ld  famous": 

? 1/n  2 = 1r2/6 
n = l  

These are fo l lowed by  more  sums, in- 
cluding one "dazzling result," a "spec- 
tacular appl icat ion of Parseval 's  for- 
mula," a "pretty result," and "an even 
more beautiful generalization" of it that 
will appear  in the succeeding  chapter .  
Now, "excited" is not  the first word  that 
comes  to mind to describe my students 
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