Skip to main content
Log in

An electromagnetic free convection flow of a micropolar fluid with relaxation time

  • Published:
Korean Journal of Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In the present investigation, we study the influence of a transverse magnetic field on the one-dimensional motion of an electrically conducting micropolar fluid through a porous medium. Laplace transform techniques are used to derive the solution in the Laplace transform domain. The inversion process is carried out using a numerical method based on Fourier series expansions.

Numerical computations for the temperature, the microrotation and the velocity distributions as well as for the induced magnetic and electric fields are carried out and represented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

tρ:

density of the fluid

u + :

velocity component in thex + direction

t + :

time

g:

acceleration due to gravity

β:

thermal expansion coefficient

T + :

temperature distribution

T + :

temperature of the fluid away from the plate

T +ω :

mean temperature of the plate

μ:

absolute viscosity

μ * :

vortex viscosity

y + :

coordinate

N + :

microrotation

α :

Alfven velocity

H 0 :

strength of a constant magnetic field

h + :

induced magnetic field

+0 :

electric permeability

E + :

induced electric field

K + :

permeability of the porous medium

ν m :

magnetic diffusivity

σ +0 :

electric conductivity

μ +0 :

magnetic permeability

j:

micro-inertia density

γ:

spin-gradient viscosity

λ + :

thermal conductivity

cp :

specific heat at constant pressure

τ +0 :

thermal relaxation time

R:

micropolar parameter, μ*

λ:

dimensionless material parameter

σ:

dimensionless material parameter

P r :

Prandtl number

References

  1. Eringen, A. C.,Theory of micropolar fluids, J. Math. 16(1966),1–18.

    MathSciNet  Google Scholar 

  2. Eringen, A. C.,Theory of thermomicrofluids, J. Math. Anal. Appl. 38.480–469(1972).

    Article  MATH  Google Scholar 

  3. Khonsari, M. M.,On the self-excited whirl orbits of a journal in a sleeve bearing lubricated with micropolar fluids. Acta Mech. 81. 235–244(1990).

    Article  MATH  Google Scholar 

  4. Khonsari, M. M., Brewe, D,On the performance of finite journal bearings lubricated with micropolar fluids, STLe Tribology Transe. 32. 155–160(1989).

    Article  Google Scholar 

  5. Hudimoto, B., Tokuoka, T,Two-dimensional shear flows of linear micropolar fluids, Int. J. Eng. Sci. 7.515–522(1969).

    Article  Google Scholar 

  6. Lockwood, F., Benchaita, M., Friberg, S,Study of lyotropic liquid crystals in viscometric flow and elastohydrodynamic contact, ASLE Tribology Trans. 30. 539–548(1987).

    Article  Google Scholar 

  7. Lee, J. D., Eringen, A.C,Boundary effects of orientation of noematic liquid crystals, J. Chem. Phys. 55.4509–4512(1971).

    Article  Google Scholar 

  8. Ariman, T., Turk. A., Sylvester, N.D,On steady and pulsatile flow of blood, J. Appl Mech. 41. 1–7(1974).

    Google Scholar 

  9. Kolpashchikov, V., Migun, N. P., Prokhorenko, P.P,Experimental determinations of material micropolar coefficients, Int. J. Eng. Sci. 21. 405–411(1983).

    Article  Google Scholar 

  10. Arman, T., Turk. M. A., Sylvester, N. D.,Microcontinuum fluid mechanics -a review, Int. J. Eng. Sci. 11, 905–930(1973).

    Article  Google Scholar 

  11. Arman, T., Turk. M. A., Sylvester, N. D.,Applications of microcontinuum fluids mechanics, Int. J. Eng. Sci. 12. 273–293(1974).

    Article  Google Scholar 

  12. Crane, L. J.,Heat transfer on continuous solid surfaces, J. Apple Math Phys. 21.645–652(1970).

    Article  Google Scholar 

  13. Chiu, C. P., Chou, H. M.,Free convection in the boundary layer flow of a micropolar fluid along a vertical wavy surface, Acta Mech. 101. 161–174(1993).

    Article  MATH  Google Scholar 

  14. Hassanien, I. A., Gorla, R. S. R,Heat transfer to a micropolar fluid from a non-isothermal strething sheet with suction and blowing, Act Mech. 84. 191–199(1990).

    Article  Google Scholar 

  15. Gorla, R. S. R,Mixed convection boundary layer flow of a micropolar fluid on a horizontal plate, Acta Mech. 108. 101–109(1995).

    Article  MATH  Google Scholar 

  16. Rama Rao, K. V.,Thermal instability in a micropolar fluid layer subject to a magnetic field, Int. J. Eng. Sci. 18. 741–750(1980).

    Article  MATH  Google Scholar 

  17. Ezzat, M. A., Abd-Elaal, M. Z.,State space approach to viscoelastic fluid flow of hydromagnetic fluctuating boundary-layer through a porous medium, ZAMM. Z. angew. Math. Mech. 3. 197–207(1997).

    MathSciNet  Google Scholar 

  18. Ezzat, M. A., Abd-Eaal, M. Z.,Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium, J. Franklin Inst. 4. 685–706(1997).

    Article  Google Scholar 

  19. Honig, G., Hirdes U,A method for the numerical inversion of the Laplace transform, J. Comp. Appl. Math. 10. 113–132(1984).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zakaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakaria, M. An electromagnetic free convection flow of a micropolar fluid with relaxation time. Korean J. Comput. & Appl. Math. 8, 447–458 (2001). https://doi.org/10.1007/BF02941978

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941978

AMS Mathematics Subject Classification

Key words and phrases

Navigation