Skip to main content
Log in

Material properties, including strain-rate effects, as related to sheet metal forming

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Strain-rate effects are included in an effort to provide data for better utilization of material in press-forming applications through material property optimization. Uniaxial tensile tests were conducted on aluminum-killed and rimmed SAE 1008 sheet steel at strain-rates up to 102 per sec. Yield, flow stress, and pct total elongation are found to be very sensitive to strain-rate, but the strain-hardening exponent and anisotropy coefficient both show only slight changes. Calculations using strain-rate insensitive and strain-rate dependent constitutive equations investigated the effect of anisotropy, strain hardening, and strain rate on two in-plane stretch problems. The effect of each of these parameters is found to depend on the type of stretch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Green and C. J. Maiden: Report No. TR 65-67, General Motors Defense Research Laboratories, Santa Barbara, Calif., December 1965.

    Google Scholar 

  2. C. J. Maiden and S. J. Green:J. Appl. Mech., 1966, vol. 88, pp. 496–504.

    Google Scholar 

  3. J. D. Campbell and R. H. Cooper:Proc. of Conf. on the Physical Basis of Yield and Fracture, pp. 77–87, Inst. of Physics and Physical Society, London, 1966.

    Google Scholar 

  4. J. D. Campbell:Acta Met., 1953, vol. 1, pp. 706–10.

    Article  CAS  Google Scholar 

  5. C. J. Maiden and J. D. Campbell:Phil. Mag., 1958, vol. 3, pp. 872–85.

    Article  Google Scholar 

  6. J. D. Campbell and K. J. Marsh:Phil. Mag., 1962, vol. 7, no. 78, pp. 933–52.

    Article  Google Scholar 

  7. K. J. Marsh and J. D. Campbell:J. Mech. Phys. Solids, 1963, vol. 11, no. 1, pp. 49–63.

    Article  Google Scholar 

  8. A. Nadai and M. Manjoine:J. Appl. Mech., 1941, vol. 8, pp. 822–39.

    Google Scholar 

  9. J. E. Johnson, D. S. Wood, and D. S. Clark:ASTM Proc., 1953, vol. 53, pp. 755–67.

    Google Scholar 

  10. J. E. Dorn, J. Mitchell and F. Hauser:Exp. Mech., 1965, vol. 5, pp. 353–62.

    Article  Google Scholar 

  11. A. Kumar, C. J. Maiden and S. J. Green:Proc. of First Inter. Conf. of the Center for High Energy Forming, vol. 2, pp. 7.1.1–7.1.55, Denver Research Institute, Denver Colorado, 1967.

    Google Scholar 

  12. A. H. Cottrell and B. A. Bilby:Proc. Phys. Soc., 1949, vol. 62A, pp. 49–62.

    CAS  Google Scholar 

  13. H. Conrad:J. Iron Stell Inst., 1961, vol. 198, pt. 4, pp. 364–75.

    Google Scholar 

  14. G. T. Hahn:Acta Met., 1962, vol. 10, pp. 727–38.

    Article  Google Scholar 

  15. W. C. Leslie and R. J. Sober:Trans. ASME, 1967, vol. 60, pp. 99–111.

    CAS  Google Scholar 

  16. W. C. Leslie, R. J. Sober, S. G. Babcock, and S. J. Green:Trans. ASM, 1969, vol. 62, pp. 690–710.

    CAS  Google Scholar 

  17. M. Ohmari and Y. Yoshinaga: Eleventh Japan Congress on Materials Research,Metallic Materials, March, 1968, pp. 95–99.

  18. T. Nakamura, S. Sakui, and A. Matsuda: Eleventh Japan Congress on Materials Research,Metallic Materials, March 1968, pp. 82–85.

  19. S. G. Babcock,et al.: Materials and Structures Laboratory, General Motors Manufacturing Development, Warren, Michigan, unpublished research, 1969.

  20. T. E. Johnson: United States Steel, Applied Research Laboratory, Mohroeville, Pennsylvania, private communication, 1969.

  21. R. Hill:J. Mech. Phys. Solid, 1952, vol. 1, pp. 19–30.

    Article  Google Scholar 

  22. J. D. Campbell, R. H. Cooper, and T. J. Fischhof:Dislocation Dynamics, pp. 723–46, McGraw-Hill, New York, 1968.

    Google Scholar 

  23. W. T. Lankford, S. C. Snyder, and J. A. Bauscher:Steel, 1949, vol. 125, no. 25, pp. 82–86.

    Google Scholar 

  24. L. Lilet and M. Wybo:Sheet Metal Ind., Oct. 1964, pp. 783–815.

  25. S. Y. Chung and H. W. Swift:Proc. Inst. Mech. Engrs., 1951, vol. 165, pp. 199–223.

    Article  Google Scholar 

  26. R. L. Whiteley:Trans. ASM, 1960, vol. 52, pp. 156–69.

    Google Scholar 

  27. R. L. Whiteley, D. E. Wise, and D. J. Blickwede:Sheet Metal Ind., May 1961, pp. 349–50.

    Google Scholar 

  28. R. L. Whiteley: Creative Manufacturing Seminar,ASTME, Feb. 1962, Bethlehem Steel Co., Bethlehem, Pennsylvania.

    Google Scholar 

  29. D. L. Harper and R. L. Whiteley:Proc. of the Metallurgical Society Conference, pp. 107–32, Gordon and Breach Publishers, New York, 1966.

    Google Scholar 

  30. D. M. Woo:J. Mech. Engrg. Sci., 1964, vol. 6, no. 2, pp. 116–31.

    Article  Google Scholar 

  31. D. M. Woo:Int. J. Mech. Sci., 1968, vol. 10, pp. 83–94.

    Article  Google Scholar 

  32. B. Budiansky and N. M. Wang:J. Mech. Phys. Solids, 1966, vol. 14, pp. 357–74.

    Article  Google Scholar 

  33. D. C. Chiang and S. Kobayashi:J. Eng. Ind., 1966, vol. 88, pp. 443–48.

    Google Scholar 

  34. J. Datsko:Material Properties and Manufacturing Processes, p. 21, John Wiley and Sons, Inc., New York, 1966.

    Google Scholar 

  35. S. J. Green, S. G. Babcock, and C. J. Malden:Proc. of the Fifth U. S. National Congress of Applied Mechanics, p. 556, American Society of Mechanical Engineers, New York, 1966.

    Google Scholar 

  36. R. D. Perkins: Materials and Structures Laboratory, General Motors Manufacturing Development, Warren, Michigan, private communication, 1969.

  37. S. G. Babcock, A. Kumar, and S. J. Green: Report No. AFFDL-TR 67-35, Part 1, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, April 1967.

    Google Scholar 

  38. T. E. Michaels, D. R. Christman, W. M. Isbell, and S. G. Babcock: Report No. 2501-4, Defense Atomic Support Agency, Washington, D. C., 1970.

    Google Scholar 

  39. F. L. Schierloh and S. G. Babcock: Report No. TR 69-273, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, 1969.

    Google Scholar 

  40. F. L. Schierloh: Materials and Structures Laboratory, General Motors Manufacturing Development, Warren, Michigan, private communication, 1970.

  41. R. Hill:The Mathematical Theory of Plasticity, pp. 317–40, Oxford University Press, New York, 1960.

    Google Scholar 

  42. W. H. Yang:J. Appl. Mech., 1969, vol. 36, no. 1, pp. 7–14.

    Google Scholar 

  43. N. M. Wang and W. J. Gordon: Report No. GMR-44, General Motors Research Laboratories, Warren, Michigan, March 1968.

    Google Scholar 

  44. N. M. Wang: Report No. GMR-962, General Motors Research Laboratories, Warren, Michigan, March 1969.

    Google Scholar 

  45. J. D. Campbell:J. Mech. Phys. Solids, 1967, vol. 15, pp. 359–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

S. J. Green, formerly Department Headd, Materials and Structures Laboratory, General Motors Manufacturing Development, Warren, Mich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, S.J., Langan, J.J., Leasia, J.D. et al. Material properties, including strain-rate effects, as related to sheet metal forming. Metall Trans 2, 1813–1820 (1971). https://doi.org/10.1007/BF02913410

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913410

Keywords

Navigation