Skip to main content
Log in

Quinua and Relatives (Chenopodium sect.Chenopodium subsect.Celluloid)

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

Traditionally viewed as an Andean grain crop,Chenopodium quinoa Willd. includes domesticated populations that are not Andean, and Andean populations that are not domesticated. Comparative analysis of leaf morphology and allozyme frequencies have demonstrated that Andean populations, both domesticated(quinua) and free-living(ajara), represent an exceptionally homogeneous unit that is well differentiated from allied domesticates of coastal Chile(quingua) and freeliving populations of the Argentine lowlands(C. hircinum). This pattern of relationships indicates that Andean populations represent a monophyletic crop/weed system that has possibly developed through cyclic differentiation (natural vs. human selection) and introgressive hybridization. Relative levels of variation suggest that this complex originated in the southern Andes, possibly from wild types allied withC. hircinum, with subsequent dispersal north to Colombia and south to the Chilean coast. Coastal populations were apparently isolated from post-dispersal differentiation and homogenization that occurred in the Andes. Other data point toward a center of origin in the northern Andes with secondary centers of genetic diversity subsequently developing in the southern Andes and the plains of Argentina. Comparative linkage of South American taxa, all tetraploid, with North American tetraploids of the subsection will eventually clarify this problem. While the possibility of a direct phyletic connection betweenC. quinoa and the Mexican domesticate(C. berlandieri subsp. nuttalliae,) cannot be excluded, available evidence indicates that the latter represents an autonomous lineage that is associated with the basal tetraploid, C. b. subsp.berlandieri, through var.sinuatum, whereas South American taxa show possible affinities to either var. zschackei or var.berlandieri. An extinct domesticate of eastern North America,C. b. subsp.jonesianum, represents either another instance of independent domestication, possibly from subsp. b. var.zschackei, or a northeastern outlier of subsp.nuttalliae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Aellen, P. 1929. Beitrag zur Systematik derChenopodium–Arten Amerikas, vorweigend auf Grund der Sammlung des United States National Museum in Washington, D.C. Feddes Repert. Spec. Nov. Regni Veg. 26:31–64, 119-160.

    Google Scholar 

  • —. 1960.Chenopodium. Pages 533–657in G. Hegi, ed., Illustrierte Flora von Mitteleuropa, 2nd ed., vol. 3. C. Hanser, Munich.

    Google Scholar 

  • —, and T. Just. 1943. Key and synopsis of the American species of the genusChenopodium L. Amer. Midi. Naturalist 30:47–67.

    Article  Google Scholar 

  • Brücher, H. 1987. The isthmus of Panama as a crossroad for prehistoric migration of domesticated plants. Geojournal 14:121–122.

    Article  Google Scholar 

  • Crawford, D. J. 1973. Morphology, flavonoid chemistry, and chromosome number of theChenopodium neomexicanum complex. Madroño 22:185–195.

    Google Scholar 

  • Cusack, D. F. 1984. Quinua: grain of the Incas. The Ecologist 14:21–31.

    Google Scholar 

  • Dostalek, J. 1987. Influence of the mode of pollination on offspring of some species of the genusChenopodium. Preslia 59:263–269.

    Google Scholar 

  • Early, D. K. 1979. Cultivation and uses of amaranth in contemporary Mexico. Pages 22–29in J. N. Cole, ed., Amaranth from the past for the future. Rodale Press, Emmaus, PA.

    Google Scholar 

  • Etchevers, G. G. 1980. Composición química de algunas leguminosas y Chenopodiâceas de la Provincia de ~Nubie. Cienc. Invest. Agrar. (Chile) 7:191–196.

    CAS  Google Scholar 

  • — 1981 Efecto de la fecha de siembra, distancia entre surcos y ecotipos sobre el rendimiento y comportamiento de quinoa (Chenopodium quinoa Willd.) in Chilian. Cienc. Invest. Agrar. (Chile) 8:19–26.

    Google Scholar 

  • Fritz, G. 1984. Identification of cultigen amaranth and chenopod from rocksheiter sites in northwest Arkansas. Am. Antiquity 49:558–572.

    Article  Google Scholar 

  • Gilmore, M. R. 1931. Vegetal remains of the Ozark Bluff Dweller culture. Pap. Michigan Acad. Sci. 14:83–103.

    Google Scholar 

  • Harlan, J. R. 1965. The possible role of weed races in the evolution of cultivated plants. Euphytica 14:173–176.

    Article  Google Scholar 

  • Heiser, C. B. 1985. Of plants and people. University of Oklahoma Press, Norman.

    Google Scholar 

  • Hunziker, A. T. 1943. Los especies alimenticias deAmaranthus y Chenopodium cultivadas por los Indios de America. Revista Argent. Agron. 30:297–353.

    Google Scholar 

  • —. 1952. Los pseudocereales de la agriculture indigena de América. ACME Agency, Buenos Aires.

    Google Scholar 

  • —, and A. M. Planchuelo. 1971. Sobre un neuvo hallazgo deAmaranthus caudatus en tumbas indigena de Argentina. Kurtziana 6:63–67.

    Google Scholar 

  • Iljin, M. M. 1936. Chenopodiaceae. Pages 2–354in V. L. Komarov, ed., Flora URSS (Centrospermae). Akademiia Nauk, Leningrad.

    Google Scholar 

  • Kirkpatrick, K. J., and H. D. Wilson. 1988. Interspecific gene flow inCucurbita: C. texana vs.C. pepo. Amer. J. Bot. 75:519–527.

    Article  Google Scholar 

  • Looser, G. 1943.Chenopodium quinoa: un cultivo que desaparece de Chile. Revista Argentina de Agronomia 10:111–113.

    Google Scholar 

  • Partap, T., and P. Kapoor. 1985a. The Himalayan grain chenopods. I. Distribution and ethnobotany. Agric. Ecosystems Environ. 14:185–199.

    Article  Google Scholar 

  • —, and —. 1985b. The Himalayan grain chenopods. II. Comparative morphology. Agric. Ecosystems Environ. 14:201–220.

    Article  Google Scholar 

  • Risi, J. C., and N. W. Galwey. 1984. TheChenopodium grains of the Andes: Inca crops for modern agriculture. Adv. Appl. Biol. 10:145–216.

    Google Scholar 

  • Safford, W. E. 1917.Chenopodium nuttalliae, a food plant of the Aztecs. J. Wash. Acad. Sci. 8:521–527.

    Google Scholar 

  • Sauer, C. O. 1950. Cultivated plants of South and Central America. Pages 495–497in J. J. Steward, ed., Handbook of the South American Indians. Bureau of American Ethnology Bull. 143. Part 6.

  • —. 1952. Agricultural origins and dispersals. American Geographical Society, New York.

    Google Scholar 

  • —. 1965. Cultural factors in plant domestication in the New World. Euphytica 14:301–306.

    Article  Google Scholar 

  • Scott, A. J. 1978. A review of the classification ofChenopodium L. and related genera (Chenopodiaceae). Bot. Jahrb. Syst. 100:205–220.

    Google Scholar 

  • Simmonds, N. W. 1965. The grain chenopods of the tropical American highlands. Econ. Bot. 19: 223–235.

    Google Scholar 

  • —. 1976a. Quinoa and relatives. Pages 29–30in N. W. Simmonds, ed., Evolution of crop plants. Longman, New York.

    Google Scholar 

  • —. 1976b. Potatoes. Pages 279–283in N. W. Simmonds, ed., Evolution of crop plants. Longman, New York.

    Google Scholar 

  • Smith, B. G. 1985.Chenopodium berlandieri ssp.jonesianum: evidence for a Hopewellian domesticate from Ash Cave, Ohio. Southeastern Archaeology 4:107–133.

    Google Scholar 

  • —. 1986. The archaeology of the southeastern United States: from Dalton to de Soto, 10,500 B.P. Pages 1–92in F. Wendorf and A. E. Close, eds., Advances in world archaeology 5. Academic Press, Orlando, FL.

    Google Scholar 

  • —. 1987a. The economic potential ofChenopodium berlandieri in prehistoric eastern North America. J. Ethnobiol. 7:29–54.

    Google Scholar 

  • -. 1987b. The independent domestication of indigenous seed-bearing plants in eastern North America. Pages 3–47in W. F. Keegan, ed., Emergent horticultural economies of the eastern woodlands. Southern Illinois University of Carbondale Center for Archaeological Investigations.

  • —. 1989. Origins of agriculture in eastern North America. Science 246:1566–1571.

    Article  PubMed  Google Scholar 

  • —, and V. A. Funk. 1985. A newly described subfossil cultivar ofChenopodium (Chenopodiaceae). Phytologia 57:445–448.

    Google Scholar 

  • Tapia, M. 1979. Historia y distributión geográfica. Pages 11–19in M. E. Tapia, ed.,Quinua ykañiwa: cultivos andinos. CIID, Bogotá.

    Google Scholar 

  • —, H. Gandarillas, S. Alandia, A. Cardozo, and A. Mujica. 1979. Quinua y kañiwa: cultivos andinos. CIID, Bogotá.

    Google Scholar 

  • Wahl, H. A. 1954. A preliminary study of the genusChenopodium in North America. Bartonia 27: 1–46.

    Google Scholar 

  • Walters, T. W. 1988a. Relationship between isozymic and morphologic variation in the diploidsChenopodium fremontii, C. neomexicanum, C. palmeri, andC. watsonii. Amer. J. Bot. 75:97–105.

    Article  CAS  Google Scholar 

  • — 1988b. Electrophoretic evidence for the evolutionary relationship of the tetraploidChenopodium berlandieri to its putative diploid progenitors. Selbyana 10:36–55.

    Google Scholar 

  • Weeden, N. F., J. J. Doyle, and M. Lavin. 1989. Distribution and evolution of a glucosephosphate isomerase duplication in the Leguminosae. Evolution 43:1637–1651.

    Article  Google Scholar 

  • West, G. C. 1967. Nutrition of tree sparrows during winter in central Illinois. Ecology 48:58–67.

    Article  Google Scholar 

  • Williams, J. T., and J. L. Harper. 1965. Seed polymorphism and germination. I. The influence of nitrates and low temperatures on the germination ofChenopodium album. Weed Res. 5:141–150.

    Article  CAS  Google Scholar 

  • Wilson, H. D. 1976. Genetic control and distribution of leucine aminopeptidase in the cultivated chenopods and related weed taxa. Biochem. Genet. 14:913–919.

    CAS  Google Scholar 

  • —. 1980. Artificial hybridization among species ofChenopodium sectionChenopodium. Syst. Bot. 5:253–263.

    Article  Google Scholar 

  • —. 1981a. Genetic variation among tetraploidChenopodium populations of southern South America (sect.Chenopodium subsect.Cellulata). Syst. Bot. 6:380–398.

    Article  Google Scholar 

  • —. 1981b. DomesticatedChenopodium of the Ozark Bluff Dwellers. Econ. Bot. 35:233–239.

    Google Scholar 

  • —. 1985.Chenopodium quinoa Willd.: variation and relationships in southern South America. Nat. Geog. Soc. Res. Repts. 19:711–721.

    Google Scholar 

  • —. 1988a. Allozyme variation and morphological relationships ofChenopodium hircinum (s.l.). Syst. Bot. 13:215–228.

    Article  Google Scholar 

  • —. 1988b. Quinua biosystematics I: domesticated populations. Econ. Bot. 42:461–477.

    Google Scholar 

  • —. 1988c. Quinua biosystematics II: free-living populations. Econ. Bot. 42:478–494.

    Google Scholar 

  • —, S. C. Barber, and T. W. Walters. 1983. Loss of duplicate gene expression in tetraploidChenopodium. Biochem. Syst. Ecology 11:7–13.

    Article  CAS  Google Scholar 

  • —, and C. B. Heiser, Jr. 1979. The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nuttalliae Saffbrd), domesticated chenopod of Mexico. Amer. J. Bot. 66:198–206.

    Article  Google Scholar 

  • Wood, R. W. 1988. Quinoa–the supergrain. Japan Publications, Tokyo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, H.D. Quinua and Relatives (Chenopodium sect.Chenopodium subsect.Celluloid). Econ Bot 44 (Suppl 3), 92–110 (1990). https://doi.org/10.1007/BF02860478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860478

Keywords

Navigation