Skip to main content
Log in

Deformation rate response of an Al-Si alloy prepared from rapidly solidified powder

  • Published:
Journal of Materials Shaping Technology

Abstract

A study on the deformation rate response of an important Al-Si-Cu-Mg alloy prepared from rapidly solidified powder is undertaken, through hot extrusion and tensile tests which cover a wide variation of strain rate. The individual effects of ram speed in extrusion and crosshead speed in tensile tests on the flow behavior of the material are analyzed. It is derived that the pressure requirement for extrusion is a combined function of ram speed (or strain rate) and temperature rise. The balance of the two factors gives an increase in extrusion pressure with rising ram speed—a result being different from that found in the extrusion of some other aluminum alloys. The tensile results obtained from the extruded material, using constant and incremental strain rate methods, prove that the flow stress of the alloy under study is more sensitive to strain rate than that of other aluminum alloys. Finally, a direct comparison between the two deformation processes is made in terms of the flow stress dependence of strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Akechi, Y. Odani, and N. Kuroishi:Sumitomo Electric Technical Review, 1985, No. 24, pp. 191–198.

  2. J. Zhou and J. Duszczyk,J. of Materials Shaping Technology, 1989, vol. 6, pp. 241–250.

    Google Scholar 

  3. T. Sheppard: in Extrusion—Scientificand Technical Developments, G. Lang, A.F. Castle, M. Bauser and G. Scharf (eds.), Deutshe Gesellschaft für Metallkunde E. V., 1981, pp. 17–43.

  4. T. Sheppard and P.J.M. Chare:Powder Metallurgy, 1972, vol. 15, pp. 17–41.

    CAS  Google Scholar 

  5. N.C. Parson and T. Sheppard:Materials Science and Technology, 1988, vol. 4, pp. 816–823.

    CAS  Google Scholar 

  6. K. Ashcroft and G.S. Lawson:J. of the Institute of Metals, 1960–61, vol. 89, pp. 369–375.

    Google Scholar 

  7. R.D. Parkinson and T. Sheppard:Powder Metallurgy, 1986, vol. 29, pp. 135–141.

    CAS  Google Scholar 

  8. A.F. Castle and T. Sheppard:Metal Technology, 1979, vol. 3, pp. 465–475.

    Google Scholar 

  9. T. Sheppard, H.B. McShane, M.A. Zaidi, and G.H. Tan:J. of Mechanical Working Technology, 1983, vol. 8, pp. 43–70.

    Article  CAS  Google Scholar 

  10. Song Yuquan and Lian Shujun:Materials Science and Technology, 1989, vol. 5, pp. 443–449.

    Google Scholar 

  11. A.R.E. Singer and J.W. Coakham:J. of the Institute of Metals, 1960-61, vol. 89, pp. 177–182.

    Google Scholar 

  12. H.L. Yiu and T. Sheppard:Materials Science and Technology, 1985, vol. 1, pp. 209–219.

    CAS  Google Scholar 

  13. J. Zhou and J. Duszczyk: inProc. of the European Conf. on Advanced Materials and Processes, Aachen, FRG, Nov. 22–24, 1989, in press.

  14. C.E. Pearson and R.N. Parkins:The Extrusion of Metals, Chapman & Hall, London, 1960, pp. 189–205.

    Google Scholar 

  15. P. Feltham:Metal Treatment, 1956, vol. 23, pp. 440–444.

    Google Scholar 

  16. D. Raybould, inProc. of the Symposium on Dispersion Strenthened Aluminum Alloys, Y-W Kim and W.M. Griffith (eds.), Phoenix, Arizona, Jan. 1988, TMS, pp. 199–215.

  17. J. Zhou and J. Duszczyk:J. of Materials Science, in press.

  18. P.P. Gillis and T.S. Gross: inMetal Handbook, 9th Edition, ASM, Metals Park, Ohio, 1988, vol. 8, pp. 38–46.

    Google Scholar 

  19. D.W. Chung and J.R. Cahoon:Metal Science, 1979, vol. 13, pp. 635–640.

    Article  CAS  Google Scholar 

  20. M.D.C. Moles and G.J. Davies:Scripta Metallurgica, 1976, vol. 10, pp. 455–458.

    Article  CAS  Google Scholar 

  21. W.A. Backofen, I.R. Turner, and D.H. Avery:Trans. ASM, 1964, vol. 57, pp. 981–990.

    Google Scholar 

  22. G.S. Murty and M.J. Koczak: inProc. of a Symp. on Processing and Properties for Powder Metallurgy Composites, Denver, Colorado, Feb. 1987, P. Kumar, K. Vedula and A. Ritter (eds.), AIME, 1987, pp. 139–153.

  23. A. Aran:Scripta Metallurgica, 1979, vol. 13, pp. 843–846.

    Article  CAS  Google Scholar 

  24. T. Altan, S. Oh, and H. Gegel:Metal Forming: Fundamentals and Applications, ASM, Metals Park, Ohio, 1983, pp. 65–66.

  25. T. Chandra and J.J. Jonas:Metallurgical Trans. A, 1970, vol. 1, pp. 2079–2082.

    Article  Google Scholar 

  26. W.A. Wong and J.J. Jonas:Trans. AIME, 1968, vol. 242, pp. 2271–2280.

    CAS  Google Scholar 

  27. E.G. Thomsen et al:Mechanics of Plastic Deformation in Metal Processing, The Macmillan Company, New York, 1965, pp. 279–317.

    Google Scholar 

  28. G.W. Rowe:An Introduction to the Principles of Metalworking, Edward Arnold, London, 1965, pp. 163–193.

    Google Scholar 

  29. J.J. Jonas, H.J. McQueen, and W.A. Wang: inDeformation under Hot Working Conditions, Iron and Steel Institute, London, 1968, pp. 49–59.

    Google Scholar 

  30. J. Zhou, J. Duszczyk, and B.M. Korevaar: inProc. of the 3rd Int. Conf. on Technology of Plasticity, Kyoto, Japan, July 2–6, 1990, in press.

  31. T. Sheppard and D. Raybould:J. of the Institute of Metals, 1973, vol. 101, pp. 73–78.

    CAS  Google Scholar 

  32. J.J. Jonas:Trans. ASM, 1969, vol. 62, pp. 300–303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Duszczyk, J. & Korevaar, B.M. Deformation rate response of an Al-Si alloy prepared from rapidly solidified powder. J. Materials Shaping Technology 8, 91–100 (1990). https://doi.org/10.1007/BF02833620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02833620

Keywords

Navigation