Skip to main content
Log in

Nitric oxide responsible for NMDA receptor-evoked inhibition of arachidonic acid incorporation into lipids of brain membrane

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

The activation of the glutamatergic NMDA receptor has no effect on arachidonic acid release from cortical synaptoneurosomal lipids prelabeled with [1-14C]arachidonic acid ([14C]AA). However, activation of NMDA receptor leads to the reduction of AA incorporation into rat brain cortex synaptoneurosomal membrane phosphatidylinositol (PI). The competitive NMDA receptor antagonist, 2-amino-5-phosphovaleric acid (APV), completely eliminates the effect of NMDA on this process. More precise analysis of the sequence of events leading to NMDA-induced decrease of AA incorporation indicates that this process is significantly blocked by voltage-gated sodium and calcium channels inhibitors, such as tetrodotoxin (TTX) and ω-conotoxin (CTX), respectively. Then the antagonist of inositol trisphosphate receptor, TMB-8, totally abolishes the effect of NMDA on AA incorporation into PI. The lowering of AA incorporation evoked by NMDA is significantly diminished by nitric oxide (NO) synthase inhibitor,N G-nitro-l-arginine (NNLA). Further studies were carried out with NO donor(s) to explain the mechanism of NO action in the inhibition of AA incorporation into PI. Our results suggest the following sequence of events: opening of voltage-dependent sodium and calcium channels, subsequent activation of PI-4,5-bisphosphate-specific phospholipase C (PLC), elevation of inositol trisphosphate (IP3)-sensitive calcium ions, stimulation of NO production and NO-mediated S-nitrosylation, or free radical effect on enzymes involved in AA incorporation. Our data suggest that NO-mediated events may be responsible for NMDA-evoked inhibition of AA incorporation into PI of synaptoneurosomal membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VSSC:

voltage-sensitive sodium channel

VSCC:

voltage-sensitive calcium channel

NMDA:

N-methyl-d-aspartate receptor

IP3 :

inositol trisphosphate

PLC:

phosphatidylinositol-4,5-bis-phosphate-specific phospholipase C

AA-CoA-S:

arachidonyl-CoA synthase

AA-CoA-T:

arachidonyl-CoA lysophospholipid acyltransferase

NOS:

nitric oxide synthase

NO:

nitric oxide

TTX:

tetrodotoxin

CTX:

ω-conotoxin, APV-2, amino-5-phosphovaleric acid

TMB-8:

8-(Diethylamino)octyl 3,4,5-trimethoxybenzoate

NNLA:

N G-nitro-l-arginine

SNP:

sodium nitroprusside

ASC:

ascorbate

References

  • Allen D. W., Newman L. M., and Okazaki I. J. (1991) Inhibition of arachidonic acid incorporation into erythrocyte phospholipids by paracetic acid and other peroxides. Role of arachidonyl-CoA: 1-palmitoyl-sn-glycero-3-phosphocholine acyltransferase.Biochim. Biophys. Acta 1081, 267–273.

    PubMed  CAS  Google Scholar 

  • Bates J. N., Baker M. T., Guerra R. Jr., and Harrison D. G. (1991) Nitric oxide generation from nitroproline by vascular tissue.Biochem. Pharmacol. 42 (suppl.), S157-S165.

    Article  PubMed  CAS  Google Scholar 

  • Bligh E. G. and Dyer W. J. (1959) A rapid method of total lipid extraction and purification.Canad. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  • Bon C., Bohme G. A., Doble A., Stutzman J. M., and Blanchard J. C. (1992) A role for nitric oxide in long-term potentiation.Eur. J. Neurosci. 4, 420–424.

    Article  PubMed  Google Scholar 

  • Brüne B. and Lapetina E. G. (1989) Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents.J. Biol. Chem. 264, 8455–8458.

    PubMed  Google Scholar 

  • Collingridge G. L. and Singer W. (1990) Excitatory amino acid receptors and synaptic plasticity.Trends Pharmacol. Sci. 11, 290–296.

    Article  PubMed  CAS  Google Scholar 

  • Dimmeler S., Lottspeich F., and Brüne B. (1992) Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase.J. Biol. Chem. 267, 16771–16774.

    PubMed  CAS  Google Scholar 

  • Dumuis A., Sebben M., Haynes L., Pin J. P., and Bockaert J. (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons.Nature (Lond.) 336, 68–70.

    Article  CAS  Google Scholar 

  • Dumuis A., Sebben M., Fagni L., Prezeau L., Manzoni O., Cragoe E. J., Jr., and Bockaert J. (1993) Stimulation by glutamate receptors of arachidonic acid release depends on the Na+/Ca2+ exchanger in neuronal cells.Mol. Pharmacol. 43, 976–981.

    PubMed  CAS  Google Scholar 

  • Garthwaite J., Charles S. L., and Chess-Williams R. (1988) Endothelium-derived relaxing factor on activation of NMDA receptors suggest role as intercellular messenger in the brain.Nature (Lond.) 336, 385–388.

    Article  CAS  Google Scholar 

  • Hollingsworth E. B., McCeal E. T., Burton J. L., Williams R. J., Daly J. W., and Creveling C. R. (1985) Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: Cyclic adenosine 3′:5′-monophosphate-generating systems, receptors and enzymes.J. Neurosci. 5, 2240–2253.

    PubMed  CAS  Google Scholar 

  • Hoyt K. R., Tang L. H., Aizenman E., and Reynolds I. J. (1992) Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurons.Brain Res. 592, 310–316.

    Article  PubMed  CAS  Google Scholar 

  • Kiedrowski L., Costa E., and Wroblewski J. T. (1992) Glutamate receptor agonists stimulate nitric oxide synthase in primary cultures of cerebellar granule cells.J. Neurochem. 58, 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Lei S. Z., Pan Z. H., Aggarwal S. K., Chen H. S. V., Hartman J., Sucher N. J., and Lipton S. A. (1992) Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex.Neuron 8, 1087–1099.

    Article  PubMed  CAS  Google Scholar 

  • Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S. V., Sucher N. J., Loscalzo J. L., Singel D. J., and Stamler J. S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.Nature 364, 626–630.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with Folin phenol reagent.J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Manzoni O., Prezeau L., Marin P., Deshager S., Bockaert J., and Fagni L. (1992) Nitric oxide-induced blockade of NMDA receptors.Neuron 8, 653–662.

    Article  PubMed  CAS  Google Scholar 

  • Mayer M. L. and Miller R. J. (1990) Excitatory amino acid receptors, second messengers and regulation of intracellular calcium in mammalian neurones.Trends Pharmacol. Sci. 11, 254–259.

    Article  PubMed  CAS  Google Scholar 

  • O’Dell T. J., Hawkins R., Kandel E., and Arancio O. (1992) Tests of the roles of diffusible substances in long-term potentiation: evidence for nitric, oxide as a possible early retrograde messenger.Proc. Natl. Acad. Sci. USA 88 11,285–11,289.

    Google Scholar 

  • Shibuki K. and Okada D. (1991) Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum.Nature 349, 326–328.

    Article  PubMed  CAS  Google Scholar 

  • Smith S. S. and Li J. (1993) Novel action of nitric oxide as mediator of N-methyl-d-aspartate-induced phosphatidylinositol hydrolysis in neonatal cerebellum.Mol. Pharmacol. 43, 1–5.

    PubMed  CAS  Google Scholar 

  • Stamler J. S., Simon D. I., Osborne J. A., Mullins M. E., Jaraki O., Michel T. Singel D. J., and Loscalzo J. (1992) S-Nitrosylation of proteins with nitric oxide: Synthesis and characterization of biologically active compounds.Proc. Natl. Acad. Sci. USA 89, 444–448.

    Article  PubMed  CAS  Google Scholar 

  • Strosznajder J. and Samochocki M. (1991) Ca2+-independent, Ca2+-dependent, and carbachol-mediated arachidonic acid release from rat brain cortex membrane.J. Neurochem. 57, 1198–1206.

    Article  PubMed  CAS  Google Scholar 

  • Strosznajder J. and Sun G. Y. (1981) Effects of acute hypoxia on incorporation of [1-14C]arachidonic acid into glycerolipids of rat brain.Neurochem. Res. 6, 767–774.

    Article  PubMed  CAS  Google Scholar 

  • Strosznajder J., Samochocki M., and Duran M. (1994a) Serotonin, a potent modulator of arachidonic acid turnover. Interaction with glutamatergic receptor in brain cortex.Neurochem. Int. 25, 193–199.

    Article  PubMed  CAS  Google Scholar 

  • Strosznajder J., Chalimoniuk M., Samochocki M., and Gadamski R. (1994b) Nitric oxide: A potent mediator of glutamatergic neurotoxicity in brain ischemia.Ann. NY Acad. Sci. 723, 429–432.

    Article  PubMed  CAS  Google Scholar 

  • Strosznajder J., Chalimoniuk M., and Samochocki M. (1995) Activation of serotonergic receptor 5-HT1A reduces calcium- and glutamate-evoked second messengers release in adult hippocampal synaptoneurosomes.Neurochem. Int. in press.

  • Volterra A., Trotti D., Cassutti P., Tromba C., Galimberti R., Lecchi P., and Racagni G. (1992a) A role for the arachidonic acid cascade in fast synaptic modulation: ion channels and transmitter uptake systems as target proteins.Adv. Exp. Med. Biol. 318, 147–158.

    PubMed  CAS  Google Scholar 

  • Volterra A., Trotti D., Cassutti P., Tromba C., Salvaggio, A., Melcangi R. C., and Racagni G. (1992b) High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes.J. Neurochem. 59, 600–606.

    Article  PubMed  CAS  Google Scholar 

  • Williams J., Errington M., Lynch M., and Bliss T. (1989) Arachidonic acid induces a long term activity-dependent enhancement of synaptic transmission.Nature (Lond.) 341, 739–742.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samochocki, M., Chalimoniuk, M. & Strosznajder, J. Nitric oxide responsible for NMDA receptor-evoked inhibition of arachidonic acid incorporation into lipids of brain membrane. Molecular and Chemical Neuropathology 29, 79–92 (1996). https://doi.org/10.1007/BF02815195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815195

Index Entries

Navigation