Skip to main content
Log in

Ribozyme mimics as catalytic antisense reagents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Viral and fungal infections and some cancers may be described as diseases that are characterized by the expression of certain unwanted proteins. They could be termed induced genetic disorders, with induction provided by mutation or infection. A comprehensive method to inactivate injurious genes based on their nucleic acid sequences has the potential to provide effective antiviral and anticancer agents with greatly reduced side effects. We describe a chemical approach to such gene-specific pharmaceutical agents. Our initial efforts have been to develop new chemical reagents that can carry out catalytic destruction of specific mRNA sequences. We chose hydrolysis as a chemical means of destruction, because hydrolysis is compatible with living cells. Our sequence-specific catalytic RNA hydrolysis reagents may be described as functional ribozyme mimics. Reactivity is provided by small-molecule catalysts, such as metal complexes. Specificity is provided by oligonucleotide probes. Here we report initial results on the sequence-specific, hydrolytic cleavage of mRNA from the HIVgag gene, using a ribozyme mimic. The reagent is composed of a terpyridylCu(II) complex for cleavage activity and an oligonucleotide for sequence specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and References

  1. Uhlmann, E. and Peyman, A. (1990),Chem. Rev. 90, 544.

    Article  Google Scholar 

  2. Cohen, J. S. ed., (1989),Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL.

    Google Scholar 

  3. Stein, C.A. and Cohen, J. S. (1988),Cancer Res. 48, 2659–2668.

    CAS  Google Scholar 

  4. For a review,see Green, P. J. et al. (1986),Ann. Rev. Biochem. 55, 569.

    Article  CAS  Google Scholar 

  5. Heywood, S. M. (1986),Nucleic Acids Res. 14, 6771.

    Article  CAS  Google Scholar 

  6. Izant, J. G. and Weintraub, H. (1985),Science 229, 345.

    Article  CAS  Google Scholar 

  7. Zamecnik, P. C. and Stephenson, M. L. (1978),Proc. Natl. Acad. Sci. USA 75, 280

    Article  CAS  Google Scholar 

  8. Stephenson, M. L. and Zamecnik, P. C. (1978),Proc. Natl. Acad. Sci. USA 75, 285.

    Article  CAS  Google Scholar 

  9. Representative examples: Matsukura, M., Shinozuka, K., Zon, G., Mitsuya, H., Reitz, M., Cohen, J. S., and Broder, S. (1987),Proc. Natl. Acad. Sci. USA 84, 7706

    Article  CAS  Google Scholar 

  10. Goodchild, J. et al. (1988),Proc. Natl. Acad. Sci. USA 85, 5507.

    Article  CAS  Google Scholar 

  11. Miller, P. S., Agris, C. H., Aurelian, L., Blake K. R., Murakami, A., Reddy, M. P., Spitz, S. A., and Ts’O, P. O. P. (1985),Biochemie 67, 769.

    Article  CAS  Google Scholar 

  12. Bashkin, J. K., Stern, M. K., and Modak, A. S. RNA Hydrolysis, patent applied for, 6/90.

  13. Bashkin, J. K., Modak, A. S., and Stern, M. K., RNA Hydrolysis, European patent EP 533753, World patent WO 9119730.

  14. Stern, M. K., Bashkin, J. K., and Sall, E. D. (1990),J. Am. Chem. Soc. 112, 5357–5359.

    Article  CAS  Google Scholar 

  15. Bashkin, J. K., Gard, J. K., and Modak, A. S. (1990),J. Org. Chem. 55, 5125–5132.

    Article  CAS  Google Scholar 

  16. Modak, A. S., Gard, J. K., Merriman, M. C., Winkeler, K. A., Bashkin, J. K., and Stern, M. K. (1991),J. Am. Chem. Soc. 113, 283–291.

    Article  CAS  Google Scholar 

  17. Bashkin, J. K., McBeath, R. J., Modak, A. S., Sample, K. R., and Wise, W. B. (1991),J. Org. Chem. 56, 3168–3176.

    Article  CAS  Google Scholar 

  18. Bashkin, J. K. (1993, inBioinorganic Chemistry of Copper, Karlin, K. and Tyeklar, Z., eds., Chapman and Hall, New York, pp. 132–139.

    Google Scholar 

  19. Bashkin, J. K., Sondhi, S. M., Sampath, U., d’Avignon, D. A., and Modak, A. S. (1994),New J. Chem. 18, 305–316.

    CAS  Google Scholar 

  20. Bashkin, J. K. and Jenkins, L. A. (1993),J. Chem. Soc. Dalton Trans. 3631–3632.

  21. Bashkin, J. K. and Jenkins, L. A. (1994),Comments Inorg. Chem. 16, 77–93.

    Article  CAS  Google Scholar 

  22. Bashkin, J. K., Frolova, E. I., and Sampath, U. (1994),J. Am. Chem. Soc. 116, 5981,5982.

    Article  CAS  Google Scholar 

  23. Haselhoff, J. and Gerlach, W. L. (1988),Nature 334, 585–591.

    Article  Google Scholar 

  24. Cech, T. R. (1988),J. Am. Med. Assoc. 260, 3030–3034.

    Article  CAS  Google Scholar 

  25. Cech, T. R. (1987),Science 236, 1532–1539.

    Article  CAS  Google Scholar 

  26. Altman, S. (1990),Angew. Chem. Int. Ed. Engl. 29, 749–758.

    Article  Google Scholar 

  27. For a recent overview,see Chrisey, L., Rossi, J., and Sarver, N. (1991),Antisense Res. and Dev. 1, 57–63.

    CAS  Google Scholar 

  28. Jeffries, A. C. and Symons, R. H. (1989),Nucleic Acid Res. 17, 1371–1377.

    Article  CAS  Google Scholar 

  29. Zuag, A. J., Kent, J. R., and Cech, T. R. (1984),Science 224, 574–578.

    Article  Google Scholar 

  30. Sigman, D. S. (1986),Acc. Chem. Res. 19, 180–186.

    Article  CAS  Google Scholar 

  31. Chen, C.-H. B. and Sigman, D. S. (1986),Proc. Natl. Acad. Sci. USA 83, 7147–7151.

    Article  CAS  Google Scholar 

  32. Chen, C.-H. B. and Sigman, D. S. (1988),J. Am. Chem. Soc. 110, 6570–6572.

    Article  CAS  Google Scholar 

  33. Chu, B. C. F. and Orgel, L. E. (1985),Proc. Natl. Acad. Sci. USA 82, 963–967.

    Article  CAS  Google Scholar 

  34. Dervan, P. B. (1986),Science 232, 464–471.

    Article  CAS  Google Scholar 

  35. Dreyer, G. B. and Dervan, P. B. (1985),Proc. Natl. Acad. Sci, USA 82, 968–972.

    Article  CAS  Google Scholar 

  36. Barton, J. K. (1986),Science 233, 727–734.

    Article  CAS  Google Scholar 

  37. Tullius, T. D. and Dombroski, B. A. (1986),Proc. Natl. Acad. Sci. USA 83, 5469–5473.

    Article  CAS  Google Scholar 

  38. Hecht, S. M., ed. (1979),Bleomycin: Chemical, Biochemical, and Biological Aspects. New York: Springer-Verlag.

    Google Scholar 

  39. Kozarich, J. W., Worth, L., Jr., Frank, B. L., Christner, D., Vanderwall, D. E., and Stubbe, J. (1989),Science 245, 1396.

    Article  CAS  Google Scholar 

  40. Sugano, Y., Kittaka, A., Otsuka, M., Ohno, M., Sugiura, Y., and Umezawa, H. (1986),let. Lett. 27, 3631–3634.

    Google Scholar 

  41. Delany, K., Arora, S. K., and Mascharak, P. K. (1988),Inorg. Chem. 27, 705–712.

    Article  CAS  Google Scholar 

  42. Breslow, R., Huang, D-L., and Anslyn, E. (1989),Proc. Natl. Acad. Sci. USA 86, 1746–1750.

    Article  CAS  Google Scholar 

  43. Anslyn, E. and Breslow, R. (1989),J. Am. Chem. Soc. 111, 4473–4482.

    Article  CAS  Google Scholar 

  44. Anslyn, E. and Breslow, R. (1989),J. Am. Chem. Soc. 111, 5972–5973.

    Article  CAS  Google Scholar 

  45. Farkas, W. (1968),Biochim. Biophys. Acta. 155, 401–409.

    CAS  Google Scholar 

  46. Butzow, J. J. and Eichhorn, G. (1971),Biochemistry 10, 2019–2027.

    Article  CAS  Google Scholar 

  47. Butzow, J. J. and Eichhorn, G. (1975),Nature 254, 358–369.

    Article  CAS  Google Scholar 

  48. Ikenaga, H. and Inoue, Y. (1974),Biochemistry 13, 577–582.

    Article  CAS  Google Scholar 

  49. Brown, R. S., Dewan, J. C., and Klug, A. (1985),Biochemistry 24, 4785–4801.

    Article  CAS  Google Scholar 

  50. Behlen, L. S., Sampson, J. R., Direnzo, A. B., and Uhlenbeck, O. C. (1990),Biochemistry 29, 2513–2523.

    Article  Google Scholar 

  51. Dimroth, K., Witzel, H., Hulsen, W., and Mirbach, H. (1959),Annalen 620, 94–108.

    CAS  Google Scholar 

  52. Bergstrom, D. E. and Ogawa, M. K. (1978),J. Am. Chem. Soc. 100, 8106.

    Article  CAS  Google Scholar 

  53. Dreyer, G. B. and Dervan, P. B. (1985),Proc. Natl. Acad. Sci. USA 82, 968.

    Article  CAS  Google Scholar 

  54. Celander, D. W. and Cech, T. R. (1990),Biochemistry 29, 1355.

    Article  CAS  Google Scholar 

  55. Westheimer, F. H. (1987),Science 235, 1173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashkin, J.K., Sampath, U. & Frolova, E. Ribozyme mimics as catalytic antisense reagents. Appl Biochem Biotechnol 54, 43–56 (1995). https://doi.org/10.1007/BF02787910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787910

Index Entries

Navigation