Skip to main content
Log in

Quantitative theory of thermal fluctuations and disorder in the vortex matter

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A metastable supercooled homogeneous vortex liquid state exists down to zero fluctuation temperature in systems of mutually repelling objects. The zero temperature liquid state therefore serves as a (pseudo) ‘fixed point’ controlling the properties of vortex liquid below and even around the melting point. Based on this picture, a quantitative theory of vortex melting and glass transition in Type II superconductors in the framework of Ginzburg-Landau approach is presented. The melting line location is determined and magnetization and specific heat jumps are calculated. The point-like disorder shifts the line downwards and joins the order-disorder transition line. On the other hand, the disorder induces irreversible effects via replica symmetry breaking. The irreversibility line can be calculated within the Gaussian variational method. Therefore, the generic phase diagram contains four phases divided by the irreversibility line and melting line: liquid, solid, vortex glass and Bragg glass. We compare various experimental results with the theoretical formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a review on the vortex phase diagram, see P Gammel, D A Huse and D J Bishop, inSpin glasses and random fields edited by A P Young (World Scientific, 1998) and references therein

  2. D R Nelson,Phys. Rev. Lett. 60, 1973 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  3. F Bouquet, C Marcenat, E Steep, R Calemczuk, W K Kwok, U Welp, G W Crabtree, R A Fisher, N E Phillips and A Schilling,Nature 411, 448 (2001)

    Article  ADS  Google Scholar 

  4. T Giamarchi and P Le Doussal,Phys. Rev. Lett. 75, 3372 (1994);Phys. Rev. B52, 1242 (1995)

    Article  ADS  Google Scholar 

  5. D Ertas and D R Nelson,Physica C272, 79 (1996)

    ADS  Google Scholar 

  6. Y Nonomura and X Hu,Phys. Rev. Lett. 28, 5140 (2001)

    Article  ADS  Google Scholar 

  7. E Zeldov, D Majer, M Konczykowski, V B Geshkenbein, V M Vinokur and H Shtrikman,Nature (tLondon) 375, 373 (1995)

    Article  ADS  Google Scholar 

  8. R Liang, D A Bonn and W N Hardy,Phys. Rev. Lett. 76, 835 (1996)

    Article  ADS  Google Scholar 

  9. A Schilling, R A Fisher, N E Phillips, U Welp, D Dasgupta, W K Kwok and G W Crabtree,Nature (London) 382, 791 (1996)

    Article  ADS  Google Scholar 

  10. M Roulin, A Junod and E Walker,Science 273, 1210 (1996)

    Article  ADS  Google Scholar 

  11. H Pastoriza, M F Goffman, A Arribêre and F de la Cruz,Phys. Rev. Lett. 72, 2951 (1994)

    Article  ADS  Google Scholar 

  12. X Liang, D A Bonn and W N Hardy,Phys. Rev. Lett. 76, 835 (1996)

    Article  ADS  Google Scholar 

  13. B Khaykovich, E Zeldov, D Majer, T W Li, P H Kes and M Konczykowski,Phys. Rev. Lett. 76, 2555 (1996)

    Article  ADS  Google Scholar 

  14. Y Radzyner, A Shaulov and Y Yeshurun,Phys. Rev. B65, 100513 (R) (2002)

    ADS  Google Scholar 

  15. Y Radzyner, A Shaulov, Y Yeshurun, I Felner, K Kishio and J Shimoyama,Phys. Rev. B65, 100503 (R) (2002)

    ADS  Google Scholar 

  16. N Avraham, B Khaykovich, Y Myasoedov, M Rappaport, H Shtrikman, D E Feldman, T Tamegai, P H Kes, M Li, M Konczykowski, K van der Beek and E Zeldov,Nature (London) 411, 451 (2001)

    Article  ADS  Google Scholar 

  17. N Kobayashi, T Nishizaki, K Shibata, T Sato, M Maki and T Sasaki,Physica C362, 121 (2001)

    ADS  Google Scholar 

  18. K Shibata, T Nishizaki, T Sasaki and N Kobayashi,Phys. Rev. B66, 214518 (2002)

    ADS  Google Scholar 

  19. D Li and B Rosenstein,Phys. Rev. Lett. 90, 167004 (2003)

    Article  ADS  Google Scholar 

  20. D Pal, S Ramakrishnan, A K Grover, D Dasgupta and Bimal K Sarma,Phys. Rev. B63, 132505 (2001)

    ADS  Google Scholar 

  21. D Pal, S Ramakrishnan and A K Grover,Phys. Rev. B65, 096502 (2002)

    ADS  Google Scholar 

  22. K Deligiannis, M Charalambous, J Chaussy, R Liang, D Bonn and W N Hardy,Physica C341, 1329 (2000)

    Google Scholar 

  23. B J Taylor, Shi Li, M B Maple and M P Maley,Phys. Rev. B68, 054523 (2003)

    ADS  Google Scholar 

  24. D T Fuchs, E Zeldov, T Tamegai, S Ooi, M Rappaport and H Shtrikman,Phys. Rev. Lett. 80, 4971 (1998)

    Article  ADS  Google Scholar 

  25. E Zeldov, private communication

  26. U Divakar, A J Drew, S L Lee, R Gilardi, J Mesot, F Y Ogrin, D Charalambous, E M Forgan, G I Menon, N Momono, M Oda, C D Dewhurst and C Baines,Phys. Rev. Lett. 92, 237004 (2004)

    Article  ADS  Google Scholar 

  27. V Dotseko,An introduction to the theory of spin glasses and neural networks (Cambridge University Press, 2001)

  28. M P A Fisher,Phys. Rev. Lett. 62, 1415 (1989)

    Article  ADS  Google Scholar 

  29. D S Fisher, M P A Fisher and D A Huse,Phys. Rev. B43, 130 (1991)

    ADS  Google Scholar 

  30. T Natterman,Phys. Rev. Lett. 64, 2454 (1990)

    Article  ADS  Google Scholar 

  31. T Natterman and S Scheindl,Adv. Phys. 49, 607 (2000)

    Article  ADS  Google Scholar 

  32. P Olsson and S Teitel,Phys. Rev. Lett. 87, 1370001 (2001)

    Google Scholar 

  33. T Giamarchi and S Bhattacharya, inHigh magnetic fields: Applications in condensed matter physics and spectroscopy edited by C Berthieret al (Springer-Verlag, 2002) p. 314

  34. H K Bokil and A P Young,Phys. Rev. Lett. 74, 3021 (1995)

    Article  ADS  Google Scholar 

  35. A van Otterlo, R T Scalettar and G T Zimanyi,Phys. Rev. Lett. 81, 1497 (1998)

    Article  ADS  Google Scholar 

  36. C Reichhardt, A van Otterlo and G T Zimanyi,Phys. Rev. Lett. 84, 1994 (2000)

    Article  ADS  Google Scholar 

  37. S E Korshunov,Phys. Rev. B48, 3969 (1993)

    ADS  Google Scholar 

  38. G I Menon,Phys. Rev. B65, 104527 (2002)

    ADS  Google Scholar 

  39. E H Brandt,Rep. Prog. Phys. 58, 1465 (1995)

    Article  ADS  Google Scholar 

  40. G P Mikitik and E H Brandt,Phys. Rev. B64, 184514 (2001);Phys. Rev. B68, 054509 (2003)

    ADS  Google Scholar 

  41. J Kierfeld and V Vinokur,Phys. Rev. B61, R 14928 (2000)

    ADS  Google Scholar 

  42. D J Thouless,Phys. Rev. Lett. 34, 946 (1975)

    Article  ADS  Google Scholar 

  43. E Brezin, D R Nelson and A Thiaville,Phys. Rev. B31, 7124 (1985)

    ADS  Google Scholar 

  44. A T Dorsey, M Huang and M P A Fisher,Phys. Rev. B45, 523 (1992)

    ADS  Google Scholar 

  45. H Sompolinsky and A Zippelius,Phys. Rev. B25, 6860 (1982)

    ADS  Google Scholar 

  46. Z Tesanovic and I F Herbut,Phys. Rev. B50, 10389 (1994)

    ADS  Google Scholar 

  47. G Eilenberger,Phys. Rev. 164, 628 (1967)

    Article  ADS  Google Scholar 

  48. K Maki and H Takayama,Prog. Theor. Phys. 46, 1651 (1971)

    Article  ADS  Google Scholar 

  49. B Rosenstein,Phys. Rev. B60, 4268 (1999)

    ADS  Google Scholar 

  50. H C Kao, B Rosenstein and J C Lee,Phys. Rev. B61, 12352 (2000)

    ADS  Google Scholar 

  51. G J Ruggeri and D J Thouless,J. Phys. F6, 2063 (1976)

    Article  ADS  Google Scholar 

  52. D Li, B Rosenstein,Phys. Rev. Lett. 86, 3618 (2001);Phys. Rev. B65, R220504, (2002)

    Article  ADS  Google Scholar 

  53. D Li and B Rosenstein,Phys. Rev. B65, 024514 (2002)

    ADS  Google Scholar 

  54. Z L Xiao, O Dogru, E Y Andrei, P Shuk and M Greenblatt,Phys. Rev. Lett. 92, 227004 (2004)

    Article  ADS  Google Scholar 

  55. Y Paltiel, E Zeldov, Y N Myasoedov, H Shtrikman, S Bhattacharya, M J Higgins, Z L Xiao, E Y Andrei, P L Gammel and D J Bishop,Nature (London) 403, 398 (2000)

    Article  ADS  Google Scholar 

  56. Y Paltiel, E Zeldov, Y Myasoedov, M L Rappaport, G Jung, S Bhattacharya, M J Higgins, Z L Xiao, E Y Andrei, P L Gammel and D J Bishop,Phys. Rev. Lett. 85, 3712 (2000)

    Article  ADS  Google Scholar 

  57. X S Ling, S R Park, B A McClain, S M Choi, D C Dender and J W Lynn,Phys. Rev. Lett. 86, 712 (2001)

    Article  ADS  Google Scholar 

  58. Z L Xiao, E Y Andrei and M J Higgins,Phys. Rev. Lett. 83, 1664 (1999)

    Article  ADS  Google Scholar 

  59. Dingping Li and B Rosenstein,Phys. Rev. B70, 144521 (2004)

    ADS  Google Scholar 

  60. D J Amit,Field theory, the renormalization group, and critical phenomena (World Scientific, Singapore, 1984)

    Google Scholar 

  61. G A Baker,Quantitative theory of critical phenomena (Academic Press, Boston, 1990)

    Google Scholar 

  62. S Hikami, A Fujita and A I Larkin,Phys. Rev. B44, R10400 (1991)

    ADS  Google Scholar 

  63. E Brezin, A Fujita and S Hikami,Phys. Rev. Lett. 65, 1949 (1990);65, 2921(E) (1990)

    Article  ADS  Google Scholar 

  64. R Sasik and D Stroud,Phys. Rev. Lett. 75, 2582 (1975)

    Article  ADS  Google Scholar 

  65. J Hu and A H MacDonald,Phys. Rev. B56, 2788 (1997)

    ADS  Google Scholar 

  66. Y Kato and N Nagaosa,Phys. Rev. B48, 7383 (1993)

    ADS  Google Scholar 

  67. J Hu and A H MacDonald,Phys. Rev. Lett. 71, 432 (1993)

    Article  ADS  Google Scholar 

  68. A E Koshelev,Phys. Rev. B56, 11201 (1997)

    ADS  Google Scholar 

  69. I F Herbut and Z Tesanovic,Phys. Rev. Lett. 73, 484 (1994)

    Article  ADS  Google Scholar 

  70. I Affleck and E Brezin,Nucl. Phys. B257, 451 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  71. M A Moore, T J Newman, A J Bray and S-K Chin,Phys. Rev. B58, 9677 (1998)

    Google Scholar 

  72. A Lopatin and G Kotliar,Phys. Rev. B59, 3879 (1999)

    ADS  Google Scholar 

  73. T Maniv, V Zhuravlev, I Vagner and P Wyder,Rev. Mod. Phys. 73, 867 (2001)

    Article  ADS  Google Scholar 

  74. V Zhuravlev and T Maniv,Phys. Rev. B69, 024522 (2004)

    ADS  Google Scholar 

  75. Z Tesanovic, L Xing, L Bulaevskii, Q Li and M Suenaga,Phys. Rev. Lett. 69, 3563 (1992)

    Article  ADS  Google Scholar 

  76. Z Tesanovic and A V Andreev,Phys. Rev. B49, 4064 (1994)

    ADS  Google Scholar 

  77. G Parisi,J. Phy. A13, 1101 (1980)

    ADS  Google Scholar 

  78. Dingping Li and B Rosenstein, cond-mat/0411096

  79. M Mezard and G Parisi,J. Phys. (France) I 1, 809 (1991)

    Article  ADS  Google Scholar 

  80. A V Lopatin,Europhys. Lett. 51, 635 (2000)

    Article  ADS  Google Scholar 

  81. G I Menon and C Dasgupta,Phys. Rev. Lett. 73, 1023 (1994)

    Article  ADS  Google Scholar 

  82. G I Menon, C Dasgupta and T V Ramakrishnan,Phys. Rev. B60, 7607 (1999)

    ADS  Google Scholar 

  83. A Schilling, U Welp, W K Kwok and G W Crabtree,Phys. Rev. B65, 054505 (2002)

    ADS  Google Scholar 

  84. M Roulin, A Junod and E Walker,Science 273, 1210 (1996)

    Article  ADS  Google Scholar 

  85. M Roulin, A Junod, A Erb and E Walker,J. Low Temp. Phys. 105, 1099 (1996)

    Article  ADS  Google Scholar 

  86. B Revaz, A Junod and A Erb,Phys. Rev. B58, 11153 (1998)

    ADS  Google Scholar 

  87. T Shibauchi, M Sato, S Ooi and T Tamegai,Phys. Rev. B57, 5622 (1998)

    ADS  Google Scholar 

  88. S Ooi, T Shibauchi and T Tamegai,Physica C302, 339 (1998)

    ADS  Google Scholar 

  89. T Sasagawa, Y Togawa, J Shimoyama, A Kapitulnik, K Kitazawa and K Kishio,Phys. Rev. B61, 1610 (2000)

    ADS  Google Scholar 

  90. B J Taylor, S Li, M B Maple and M P Maley,Phys. Rev. B68, 054523 (2003)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Rosenstein, B. & Lin, P. Quantitative theory of thermal fluctuations and disorder in the vortex matter. Pramana - J Phys 66, 99–111 (2006). https://doi.org/10.1007/BF02704940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704940

Keywords

PACS Nos

Navigation