Skip to main content
Log in

Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A maximum likelihood method for inferring evolutionary trees from DNA sequence data was developed by Felsenstein (1981). In evaluating the extent to which the maximum likelihood tree is a significantly better representation of the true tree, it is important to estimate the variance of the difference between log likelihood of different tree topologies. Bootstrap resampling can be used for this purpose (Hasegawa et al. 1988; Hasegawa and Kishino 1989), but it imposes a great computation burden. To overcome this difficulty, we developed a new method for estimating the variance by expressing it explicitly.

The method was applied to DNA sequence data from primates in order to evaluate the maximum likelihood branching order among Hominoidea. It was shown that, although the orangutan is convincingly placed as an outgroup of a human and African apes clade, the branching order among human, chimpanzee, and gorilla cannot be determined confidently from the DNA sequence data presently available when the evolutionary rate constancy is not assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Contr AC-19:716–723

    Article  Google Scholar 

  • Akaike H (1985) Prediction and entropy. In: Atkinson AC, Fienberg SE (eds) A celebration of statistics, the ISI centenary volume. Springer-Verlag, New York, pp 1–24

    Google Scholar 

  • Andrews P (1985) Catarrhine evolution. In: Delson E (ed) Ancestors: the hard evidence. Alan R Liss, New York, pp 9–13

    Google Scholar 

  • Andrews P (1986a) Fossil evidence on human origins and dispersal. Cold Spring Harbor Symp Quant Biol 52:419–428

    Google Scholar 

  • Andrews P (1986b) Molecular evidence for catarrhine evolution. In: Wood B, Martin L, Andrews P (eds) Major topics in primate and human evolution. Cambridge University Press, Cambridge, pp 107–129

    Google Scholar 

  • Andrews P (1987) Aspects of hominoid phylogeny. In: Patterson C (ed) Molecules and morphology in evolution: conflict or compromise? Cambridge University Press, Cambridge, pp 23–53

    Google Scholar 

  • Andrews P, Cronin JE (1982) The relationships ofSivapithecus andRamapithecus and the evolution of the orang-utan. Nature 297:541–546

    Article  PubMed  Google Scholar 

  • Andrews P, Martin L (1987) Cladistic relationships of extant and fossil hominoids. J Hum Evol 16:101–118

    Article  Google Scholar 

  • Barry B, Hartigan JA (1987a) Statistical analysis of hominoid molecular evolution. Stat Sci 2:191–210

    Google Scholar 

  • Barry D, Hartigan JA (1987b) Asynchronous distance between homologous DNA sequences. Biometrics 43:261–276

    PubMed  Google Scholar 

  • Benveniste RE, Todaro GJ (1976) Evolution of type C viral genes: evidence for an Asian origin of man. Nature 261:101–107

    PubMed  Google Scholar 

  • Bishop MJ, Friday AE (1985) Evolutionary trees from nucleic acid and protein sequences. Proc R Soc Lond B 226:271–302

    Google Scholar 

  • Bishop MJ, Thompson EA (1986) Maximum likelihood alignment of DNA sequences. J Mol Biol 190:159–165

    Article  PubMed  Google Scholar 

  • Bishop MJ, Friday AE, Thompson EA (1987) Inference of evolutionary relationships. In: Bishop MJ, Rawlings CJ (eds) Nucleic acid and protein sequence analysis: a practical approach. IRL Press, Oxford, pp 359–385

    Google Scholar 

  • Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398

    PubMed  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequence of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    PubMed  Google Scholar 

  • Collins FS, Weissman SM (1984) Molecular genetics of human hemoglobin. Prog Nucleic Acid Res Mol Biol 31:315–439

    PubMed  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27: 401–410

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  Google Scholar 

  • Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Q Rey Biol 57:379–404

    Article  Google Scholar 

  • Felsenstein J (1983a) Methods for inferring phylogenies: a statistical view. In: Felsenstein J (ed) Numerical taxonomy. Springer-Verlag, Berlin, pp 315–334

    Google Scholar 

  • Felsenstein J (1983b) Statistical inference of phylogenies. J R Stat Soc A 146:246–272

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1987) Estimation of hominoid phylogeny from a DNA hybridization data set. J Mol Evol 26:123–131

    PubMed  Google Scholar 

  • Ferris SD, Wilson AC, Brown WM (1981) Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proc Natl Acad Sci USA 78:2432–2436

    PubMed  Google Scholar 

  • Ferris SD, Sage RD, Huang C-M, Nielsen JT, Ritte U, Wilson AC (1983) Flow of mitochondrial DNA across a species boundary. Proc Natl Acad Sci USA 80:2290–2294

    PubMed  Google Scholar 

  • Fitch WM (1986) Commentary. Mol Biol Evol 3:296–298

    Google Scholar 

  • Goldman D, Giri PR, O'Brien SJ (1987) A molecular phylogeny of the hominoid primates as indicated by two-dimensional protein electrophoresis. Proc Natl Acad Sci USA 84:3307–3311

    PubMed  Google Scholar 

  • Goodman M (1963) Serological analysis of the systematics of recent hominoids. Hum Biol 35:337–436

    Google Scholar 

  • Goodman M, Braunitzer G, Stagl A, Schrank B (1983) Evidence on human origins from haemoglobins of African apes. Nature 303:546–548

    Article  PubMed  Google Scholar 

  • Hasegawa M, Kishino H (1989) Confidence limits on the maximum likelihood estimate of the hominoid tree from mitochondrial DNA sequences. Evolution (in press)

  • Hasegawa M, Yano T (1984a) Phylogeny and classification of Hominoidea as inferred from DNA sequence data. Proc Jpn Acad B60:389–392

    Google Scholar 

  • Hasegawa M, Yano T (1984b) Maximum likelihood method of phylogenetic inference from DNA sequence data. Bull Biomet Soc Jpn 5:1–7

    Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the humanape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1987) Man's place in Hominoidea as inferred from molecular clocks of DNA. J Mol Evol 26:132–147

    PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1988) Phylogenetic inference from DNA sequence data. In: Matusita K (ed) Statistical theory and data analysis II: proceedings of 2nd Pacific Area Statistical Conference. North-Holland. Amsterdam, pp 1–13

    Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1989) Estimation of branching dates among primates by molecular clocks of nuclear DNA which slowed down in Hominoidea. J Hum Evol (in press)

  • Hixson JE, Brown WM (1986) A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications. Mol Biol Evol 3:1–18

    PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  Google Scholar 

  • Kishino H, Hasegawa M (1989) Converting distance to time: an application to human evolution. In: Doolittle RF (ed) Methods in enzymology: molecular evolution—computer analysis of protein and nucleic acid sequence. Academic Press, New York (in press)

    Google Scholar 

  • Kluge AG (1983) Cladistics and the classification of the great apes. In: Ciochon RL, Corruccini RS (eds) New interpretations of ape and human ancestry. Plenum Press, New York, pp 151–177

    Google Scholar 

  • Koop BF, Goodman M, Xu P, Chan K, Slightom JL (1986) Primate η-globin DNA sequences and man's place among the great apes. Nature 319:234–238

    Article  PubMed  Google Scholar 

  • Kullback S (1959) Information theory and statistics. Wiley, New York

    Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Google Scholar 

  • Li W-H, Tanimura M (1987) The molecular clock runs more slowly in man than in apes and monkeys. Nature 326:93–96

    Article  PubMed  Google Scholar 

  • Maeda N, Wu C-I, Bliska J, Reneke J (1988) Molecular evolution of intergenic DNA in higher primates: pattern of DNA changes, molecular clock, and evolution of repetitive sequences. Mol Biol Evol 5:1–20

    PubMed  Google Scholar 

  • Martin L (1986) Relationships among extant and extinct great apes and humans. In: Wood B, Martin L, andrews P (eds) Major topics in primate and human evolution. Cambridge University Press, Cambridge, pp 161–187

    Google Scholar 

  • Miyamoto M, Slightom JL, Goodman M (1987) Phylogenetic relations of humans and African apes from DNA sequences in the ψη-globin region. Science 238:369–373

    PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Neyman J (1971) Molecular studies of evolution: a source of novel statistical problems. In: Gupta SS, Yackel J (eds) Statistical decision theory and related topics. Academic Press, New York, pp 1–27

    Google Scholar 

  • Penny D, Hendy M (1986) Estimating the reliability of evolutionary trees. Mol Biol Evol 3:403–417

    PubMed  Google Scholar 

  • Pilbeam D (1985) Patterns of hominoid evolution. In: Delson E (ed) Ancestors: the hard evidence. Alan R Liss, New York, pp 51–59

    Google Scholar 

  • Ruvolo M, Smith TF (1986) Phylogeny and DNA-DNA hybridization. Mol Biol Evol 3:285–289

    PubMed  Google Scholar 

  • Saitou N (1986) On the delta Q-test of Templeton. Mol Biol Evol 3:282–284

    PubMed  Google Scholar 

  • Saitou N (1988) Property and efficiency of the maximum likelihood method for molecular phylogeny. J Mol Evol 27:261–273

    PubMed  Google Scholar 

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D. Reidel Publishing Co, Dordrecht

    Google Scholar 

  • Sarich VM, Wilson AC (1967) Immunological time scale for hominid evolution. Science 158:1200–1203

    PubMed  Google Scholar 

  • Schwartz JH (1984) The evolutionary relationships of man and orang-utans. Nature 308:501–505

    Article  PubMed  Google Scholar 

  • Schwartz JH (1987) The red ape. Elm Tree Books, London

    Google Scholar 

  • Sibley CG, Ahlquist JE (1984) The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. J Mol Evol 20:2–15

    PubMed  Google Scholar 

  • Sibley CG, Ahlquist JE (1987) DNA hybridization evidence of hominoid phylogeny: results from an expanded data set. J Mol Evol 26:99–121

    PubMed  Google Scholar 

  • Takahata N, Nei M (1985) Gene genealogy and variance of interpopulational nucleotide differences. Genetics 110:325–344

    PubMed  Google Scholar 

  • Templeton AR (1985) The phylogeny of the hominoid primates: a statistical analysis of the DNA-DNA hybridization data. Mol Biol Evol 2:420–433

    PubMed  Google Scholar 

  • Templeton AR (1986) Further comments on the statistical analysis of DNA-DNA hybridization data. Mol Biol Evol 3:290–295

    PubMed  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishino, H., Hasegawa, M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29, 170–179 (1989). https://doi.org/10.1007/BF02100115

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100115

Key words

Navigation