Skip to main content
Log in

The Weierstrass mean

I. The periods of ℘(z|e 1,e 2,e 3)

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Theorem.Let the sequences {e (n) i },i=1, 2, 3,n=0, 1, 2, ...be defined by

where the e (0)′ s satisfy

and where all square roots are taken positive. Then

where the convergence is quadratic and monotone and where

The discussions of convergence are entirely elementary. However, although the determination of the limits can be made in an elementary way, an acquaintance with elliptic objects is desirable for real understanding.

In fact thee (0) i 's will be interpreted as the values of a ℘-function at its half periods and the successive e (n)′ i s will be the corresponding values for a ℘-function with the same real period and with the imaginary period doubled at each stage-this is the Landen transformation. Ultimately the ℘-function will degenerate into a trigonometrical function.

The subtitle is explained by the fact that the real half-period, ω, of the ℘-function defined by

$$y^{'2} = 4(y - e_1^{(0)} )(y - e_2^{(0)} )(y - e_3^{(0)} ) if found from W = \frac{1}{{12}}\left( {\frac{\pi }{\omega }} \right)^2 $$

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: (eds.) Handbook of functions. NBS Applied Math. Series, vol. 55, Washington, D. C., U.S. Government Printing Office. 1964

    Google Scholar 

  2. Borwein, J.M., Borwein, P.B.: Pi and the AGM. New York: Wiley 1987

    Google Scholar 

  3. Cox, D.A.: The arithmetic-geometric mean of Gauss. Enseign. Math., II. Ser.,30, 275–330 (1984)

    Google Scholar 

  4. Erdélyi, A.: (ed.) Higher transcendental functions, based, in part, on notes left by Harry Bateman, 3 vols. New York: McGraw-Hill 1953–55

    Google Scholar 

  5. Gauss, C.F.: Werke. 12 vols. reprint. Hildesheim: Georg Olms 1981

    Google Scholar 

  6. Geppert, H.: Bestimmung der Anziehung eines elliptischen Ringes. Ostwald's Klassiker, vol. 225. Leipzig: Akad. Verlag 1927

    Google Scholar 

  7. Geppert, H.: Zur Theorie des arithmetisch-geometrischen Mittels. Math. Ann.99, 162–180 (1928)

    Google Scholar 

  8. Chih-Bing, Ling: Evaluation at half periods of Weierstrass' elliptic function with rectangular primitive period-parallelogram. Math. Comput.14, 67–70 (1960)

    Google Scholar 

  9. Schwarz, H.A.: Formeln und Lehrsätze zum Gebrauch der elliptischen Functionen, ed. 2. Berlin Heidelberg New York: Springer 1893

    Google Scholar 

  10. Tannery, J., Molk, J.: Eléments de la théorie des functions elliptiques, 4 vols. Paris: Gauthier-Villars, 1893–1902

    Google Scholar 

  11. Krafft, M., Tricomi, F.G.: Elliptische Funktionen. Leipzig Akad. Verlag 1968

    Google Scholar 

  12. Weierstrass, K.: Mathematische Werke, 7 vols. Berlin: Mayer und Müller 1913

    Google Scholar 

  13. Whittaker, E.T., Watson, G.N.: A course of modern analysis, 4th. ed. Cambridge: University Press 1927

    Google Scholar 

  14. Carlson, B.C.: Landen transformation of integrals. In: Wong, R. (ed.), Asymptotic and computational analysis. Conference in honor of F.W.J. Olver's 65th birthday. Lecture notes in Pure and Applied Math. Series, vol. 124. New York: Marcel Dekker 1990

    Google Scholar 

  15. Grayson, D.R.: The arithmo-geometric mean. Arch. Math.52, 507–512 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to R. S. Varga on the occasion of his birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, J. The Weierstrass mean. Numer. Math. 57, 737–746 (1990). https://doi.org/10.1007/BF01386440

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01386440

Subject Classification

Navigation