Skip to main content
Log in

Origin of rate dependence in frictional sliding

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Experiments indicate that frictional resistance to sliding between macroscopic, clean, dry surfaces depends on the average rateV at which the surfaces are translated relative to each other. Using a new lattice automaton, we obtain results suggesting that rate-dependent macroscopic dynamics may arise from microscopic interactions between contact points which decay from a metastable state with a finite lifetimeΓ. Sliding is accommodated by clusters, or avalanches, of failed lattice contact points, and corresponds to successive quenches into the metastable state by an electromechanical loading system with a finite response timeΔ. Under the quasistatic assumptionΔΓ, rate dependence is a consequence of the increase in correlation length ξd of clusters of failed lattice points as quench rate increases. Special cases of the model are isomorphic to the selforganized criticality model for sandpiles, and to block-spring models of the type first studied by Burridge and Knopoff for earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. H. Dieterich,Pure Appl. Geophys. 116:790 (1978); P. G. Okubo and J. H. Dieterich, inEarthquake Source Mechanics, S. Das, J. Boatwright, and C. H. Scholz, eds. (Geophys. Monogr. 37, American Geophysical Union, 1986).

    Google Scholar 

  2. A. L. Ruina,J. Geophys. Res. 88:10359 (1983).

    Google Scholar 

  3. M. L. Blanpied, T. E. Tullis, and J. D. Weeks,Geophys. Res. Lett. 14:554 (1987).

    Google Scholar 

  4. W. A. Olsson, Rock Joint Compliance Studies, Sandia Report SAND86-0177, Sandia National Laboratories, Albuquerque, New Mexico (1987).

    Google Scholar 

  5. C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang,Phys. Rev. Lett. 59:1942 (1987).

    Google Scholar 

  6. J. B. Rundle and D. D. Jackson,Bull. Seism. Soc. Am. 67:1363 (1977).

    Google Scholar 

  7. J. B. Rundle,J. Geophys. Res. 93:6237 (1988).

    Google Scholar 

  8. P. Bak, C. Tang, and K. Wiesenfeld,Phys. Rev. A 38:364 (1988).

    Google Scholar 

  9. R. Burridge and L. Knopoff,Bull. Seism. Soc. Am. 57:341 (1967).

    Google Scholar 

  10. S. R. Brown and C. H. Scholz,J. Geophys. Res. 90:12575 (1985).

    Google Scholar 

  11. H.-O. Peitgen and D. Saupe,The Science of Fractal Images (Springer-Verlag, New York, 1988).

    Google Scholar 

  12. D. Stauffer,Introduction to Percolation Theory (Taylor and Francis, London, 1985).

    Google Scholar 

  13. S.-K. Ma,Modern Theory of Critical Phenomena (Benjamin/Cummings, London, 1976).

    Google Scholar 

  14. B. D. Coleman,J. Chem. Phys. 47:597 (1967); B. D. Coleman and V. J. Mizel,Arch. Rat. Mech. Anal. 23:87 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rundle, J.B., Brown, S.R. Origin of rate dependence in frictional sliding. J Stat Phys 65, 403–412 (1991). https://doi.org/10.1007/BF01329869

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01329869

Key words

Navigation