Skip to main content

Advertisement

Log in

Effects of water-soluble fraction of the Mexican crude oil “Isthmus Cactus” on growth, cellular content of chlorophylla, and lipid composition of planktonic microalgae

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Phytoplankton species were grown in batch cultures in the presence of the water-soluble fraction (WSF; 50 and 100%) of a Mexican crude oil (Isthmus Cactus). The algae exhibited various responses ranging from retarded growth to stimulation of growth. The cellular content of chlorophylla and the lipid composition of the algae were examined. Four algae, the bacillariophytesNitzschia closterium andAsterionella glacialis, the cryptophytesRhodomonas lens, and the chlorophyteDunaliella tertiolecta, exhibited retarded growth. In most of these algae, cellular chlorophylla, lipid pigments, glycolipids and triglycerides decreased whereas sterols and hydrocarbons accumulated. Phospholipids did not exhibit any specific pattern of change during the experiments. The cyanophyteAgmenellum quadruplicatum and the bacillariophyteSkeletonema costatum were less sensitive to the WSF. The cell yield of the dinophyteProrocentrum minimum was stimulated by the WSF. In these three latter species, lipid pigments were enhanced or remained at control levels. We concluded that the toxic effect of the WSF disrupts the biosynthesis mechanisms required for a functional photosynthetic apparatus (biosynthesis of chlorophylla, glycolipids and lipid pigments) in sensitive algae, a phenomenon coupled to sterol accumulation in these algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Antia, N. J., Cheng, J. Y. (1970). The survival of axenic culture of marine phytoplanktonic algae after prolonged exposure to darkness at 20°C. Phycologia 9: 179–183

    Google Scholar 

  • Ballantine, J. A., Lavis, A., Morris, R. J. (1979). Sterols of the phytoplankton. Effects of illumination and growth stage. Phytochem. 18: 1459–1466

    Google Scholar 

  • Batterton, J. C., Winters, K., Van Baalen, C. (1978). Sensitivity of three microalgae to crude oils and fuel oils. Mar. envirl Res. 1: 31–41

    Google Scholar 

  • Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917

    PubMed  Google Scholar 

  • Boutry, J. L., Barbier, M., Ricard, M. (1976). La diatoméeChaetoceros simplex calcitrans Poulsen et son envirionnement. II. Effets de la lumière et des irradiations ultra-violettes sur la production primaire et la biosynthèse des stérols. J. exp. mar. Biol. Ecol. 21: 69–74

    Google Scholar 

  • Boylan, D. B., Tripp, B. W. (1971). Determination of hydrocarbons in sea water extracts of crude oil and crude oil fractions. Nature, Lond. 230: 44–47

    Google Scholar 

  • Connell, D. W., Miller, G. J. (1980). Petroleum hydrocarbons in aquatic ecosystems. Behaviour and effects of sublethal concentration. CRC critical Rev. envir. Control 11: 37–104

    Google Scholar 

  • Corner, E. D. S. (1978). Pollution studies with marine plankton. Part I. Petroleum hydrocarbons and related compounds. Adv. mar. Biol. 16: 289–379

    Google Scholar 

  • Delmas, R. P., Parrish, C. C., Ackman, R. G. (1984). Determination of lipid class concentrations in sea water by thin-layer chromatography with flame ionization detection. Analyt. Chem. 56: 1272–1277

    Google Scholar 

  • James, A. T., Nichols, B. W. (1966). Lipids of photosynthetic systems. Nature, Lond. 372–375

    Google Scholar 

  • Jones, G. J., Nichols, P. D., Jones, R. B. (1983). The lipid composition ofThoracosphaera heimii: evidence for inclusion in the Dinophyceae. J. Phycol. 19: 416–420

    Google Scholar 

  • Karydis, M., Fogg, G. E. (1980). Physiological effects of hydrocarbons on the marine diatomCyclotella cryptica. Microb. Ecol. 6: 281–290

    Google Scholar 

  • Kates, M., Volcani, B. E. (1966). Lipids components of diatoms. Biochim. biophys. Acta 116: 264–278

    PubMed  Google Scholar 

  • Le Fèvre, J. (1979). On the hypothesis of a relationship between dinoflagellate blooms and the “Amoco-Cadiz” oil spill. J. mar. biol. Ass. U. K. (short notes) 59: 525–528

    Google Scholar 

  • Lee, R. F., Takahashi, M., Beers J. (1978). Short term effects of oil on plankton in controlled ecosystems. Proceedings of Conference on Assessment of Ecological Impacts of Oil Spills, 14–17 June 1978. American Institute of Biological Sciences, New York

    Google Scholar 

  • Lin, D. S., Ilias, A. M., Connor, W. E., Caldwell, R. S., Cory, H. T., Daves, G. D. (1982). Composition and biosynthesis of sterols in selected marine phytoplankton. Lipids 17: 818–824

    Google Scholar 

  • Lorenzen, C. J. (1966). A method for the continous measurement ofin vivo chlorophyll concentration. Deep-Sea Res. 13: 223–227

    Google Scholar 

  • Lynch, D. V., Thompson, G. A. (1984). Chloroplast phospholipid molecular species alterations during low temperature acclimation inDunaliella. Pl. Physiol. 74: 198–203

    Google Scholar 

  • Morris, R. J. (1984). Studies of a spring phytoplankton bloom in an enclosed experimental ecosystem. II. Changes in the component fatty acids and sterols. J. exp. mar. Biol. Ecol. 75: 59–70

    Google Scholar 

  • Morris, R. J., MacCartney, M. J., Joint, I. R., Robinson, G. A. (1986). Further studies of a spring phytoplankton bloom in an enclosed experimental ecosystem. J. exp. mar. Biol. Ecol. 86: 151–170

    Google Scholar 

  • Nichols, P. D., Jones, G. J., de Leeuw, J. W., Jones, R. B. (1984). The fatty acids and sterol composition of two marine dinoflagellates. Phytochem. 23: 1043–1047

    Google Scholar 

  • O'Brien, P. Y., Dixon, P. S. (1976). The effects of oils and oil components on algae: review. Br. phycol. J. 11: 115–142

    Google Scholar 

  • Opute, F. I. (1974a). Physiological studies on the phospholipids of diatoms. J. exp. Bot. 25: 810–822

    Google Scholar 

  • Opute, F. I. (1974b). Lipid and fatty acid composition of diatoms. J. exp. Bot. 25: 823–835

    Google Scholar 

  • Orcutt, D. M., Patterson, G. W. (1975). Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media. Comp. Biochem. Physiol. 50B: 579–583

    Google Scholar 

  • Paasche, E., Bryceson, I., Tangen, K. (1984). Interspecific variation in dark nitrogen uptake by dinoflagellates. J. Phycol. 20: 394–401

    Google Scholar 

  • Parrish, C. C., Ackman, R. G. (1983). Chromarod separations for the analysis of marine lipid classes by Iatroscan thin-layer chromatography flame ionization detection. J. Chromat. 262: 103–112

    Google Scholar 

  • Patterson, G. W. (1971). The distribution of sterols in algae. Lipids 6: 120–127

    Google Scholar 

  • Patterson, G. W. (1974). Sterols of some green algae. Comp. Biochem. Physiol. 47B: 453–457

    Google Scholar 

  • Rosenberg, A., Gouaux, J. (1967). Quantitative and compositional changes in monogalactosyl and digalactosyl diglycerids during light-induced formation of chloroplasts inEuglena gracilis. J. Lipid Res. 8: 80–83

    PubMed  Google Scholar 

  • Schifrin, N. S., Chisholm, S. W. (1981). Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycle. J. Phycol. 17: 374–384

    Google Scholar 

  • Smith, J. E. (1968). Torrey Canyon pollution and marine life. Cambridge University Press, London

    Google Scholar 

  • Stern, A. I., Schiff, J. A., Klein, H. P. (1960). Isolation of ergosterol fromEuglena gracilis; distribution among mutant strains. J. Protozool. 7: 52–55

    Google Scholar 

  • Vandermeulen, J. H., Ahern, T. P. (1976). Effects of petroleum on algal physiology: review and progress report. In: Lockwood, A. P. M. (ed.) Effects of pollutants on aquatic organisms. Cambridge University Press, p. 107–125

  • Vestal, J. R., Cooney, J. J., Crow, S., Berger, J. (1984). Effects of hydrocarbons on microorganisms. In: Atlas, R. M. (ed.) Petroleum microbiology. MacMillan Press, New York, p. 475–506

    Google Scholar 

  • Volkman, J. K., Gagosian, R. B., Wakeham, S. G. (1984). Free and esterified sterols of the marine dinoflagellateGonyaulax polygramma. Lipids 19: 457–465

    Google Scholar 

  • Winters, K., O'Donnell, R., Batterton, J. C., Van Baalen, C. (1976). Water-soluble components of four fuel oils: chemical characterization and effects on growth of microalgae. Mar. Biol. 36: 269–276

    Google Scholar 

  • Winters, K., Van Baalen, C., Nicol, J. A. C. (1977). Water-soluble extractives from petroleum oils: chemical characterization and effects on microalgae and marine animals. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 171: 166–174

    Google Scholar 

  • Yentsch, C. S., Menzel, D. W. (1963). A method for the determination of the phytoplankton, chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221–231

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Loo, M.R., Goutx, M. Effects of water-soluble fraction of the Mexican crude oil “Isthmus Cactus” on growth, cellular content of chlorophylla, and lipid composition of planktonic microalgae. Mar. Biol. 104, 503–509 (1990). https://doi.org/10.1007/BF01314357

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01314357

Keywords

Navigation