Skip to main content
Log in

Effects of collision-induced breakup on drop size distributions in steady state rainshafts

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

New equations and techniques for dealing with drop breakups are developed and applied to the modelling of the evolution of raindrop spectra in rainshafts. Breakup experiments byMcTaggart-Cowan andList (1975) served as data base.

No matter what the original size distribution, the spectrum evolution will always lead to a Marshall-Palmer type equilibrium di tributionN=N 0e−ΛD, with Λ=constant andN 0 proportional to the rainfall rateR. (D stands for raindrop diameter.) ForR≥29 mm h−1 and an original Marshall-Palmer distribution, the required fall height to reach equilibrium is ≲2 km.

The equilibrium distributions are characterized by linear relationships betweenR, the radar reflectivity factorZ, the liquid water content LWC and theN 0 of the Marshall-Palmer distribution. Possible explanations for the discrepancy with observations are given.

The fact that the all-water processes cannot produce drops withD≥2.5 mm (as confirmed by observations) leads to the conclusion that observed large raindrops withD≈5 mm represent melted hailstones and have not yet reached an equilibrium distribution. These latter conclusions were reached within the original assumption of videspread, steady state precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausman, E. L. andBrook, M. (1967),Distortion and disintegration of water drops in strong electric fields J. Geophys. Res.72, 6131–6135.

    Google Scholar 

  • Azad, A. K. andLatham, J. (1970),The disintegration of charged drop-pairs in an electric field, J. Atmos. Terr. Phys.32, 345–354.

    Google Scholar 

  • Best, A. C. (1950),Empirical formulae for the terminal velocity of water drops falling through the atmosphere, Quart. J. Roy. Meteor. Soc.76, 302–311.

    Google Scholar 

  • Blanchard, D. C. (1948),Observations on the behaviour of water drops at terminal velocity in air, Occas. Rept. 7, Project Cirrus, General Electric Research Laboratories, Schenectady, N.Y., pp. 100–110.

    Google Scholar 

  • Blanchard, D. C. andSpencer, A. T. (1957),Raindrop measurements during Project Shower, Tellus9, 541–552.

    Google Scholar 

  • Bleck, R. (1970),A fast, approximative method for integrating the stochastic coalescence equation, J. Geophys. Res.75, 5165–5171.

    Google Scholar 

  • Brazier-Smith, P. R., Jennings, S. G. andLatham, J. (1972),The interaction of falling water drops: coalescence, Proc. Roy. Soc. A326, 393–408.

    Google Scholar 

  • Cotton, W. R. andGokhale, N. R. (1967),Collision, coalescence, and breakup of large water drops in a vertical wind tunnel, J. Geophys. Res.72, 4041–4049.

    Google Scholar 

  • Danielsen, E. F., Bleck, R. andMorris, D. A. (1972),Hail growth by stochastic collection in a cumulus model, J. Atmos. Sci.29, 135–155.

    Google Scholar 

  • Fujiwara, M. (1967),Raindrop size distribution in warm rain as measured in Hawaii, Tellus9, 392–402.

    Google Scholar 

  • Gillespie, J. R. (1977), Numerical modelling of the evolution of drop size distributions in rain. Ph.D. Thesis, University of Toronto pp. 147.

  • Gillespie, J. R. andList, R. (1976),Evolution of raindrop size distribution in steady state rainshafts, Proc. Int. Could Physics Conf., Boulder, Colo., July 1976, pp. 472–477.

  • Gunn, R. (1965),Collision characteristics of freely falling water drops, Science150, 695–701.

    Google Scholar 

  • Kessler, E. (1969),On the distribution and continuity of water substance in atmospheric circulations, Meteor. Monog. 10, No. 32, 84 pp.

  • Klett, J. D. (1971),On the breakup of water drops in air. J. Atmos. Sci.28, 646–647.

    Google Scholar 

  • Komabayasi, M., Gonda, T. andIsono, K. (1964),Life time of water drops before breaking and size distribution of fragment droplets, J. Meteor. Soc. Japan42, 330–340.

    Google Scholar 

  • Latham, J. (1965),The mass loss of water drops falling in electric fields, Quart. J. Roy. Meteor. Soc.91, 87–90.

    Google Scholar 

  • Latham, J., andMyers, V. (1970),Loss of charge and mass from raindrops falling in intense electric fields, J. Geophys. Res.75, 515–520.

    Google Scholar 

  • Levin, A., Neiburger, M. andRodriguez, L. (1973),Experimental evaluation of collection and coalescence efficiencies of cloud drops, J. Atmos. Sci.30, 944–946.

    Google Scholar 

  • List, R. andGillespie, J. R. (1976),Evolution of raindrop spectra with collision-induced breakup, J. Atmos. Sci.33, 2007–2013.

    Google Scholar 

  • List, R., MacNeil, C. F. andMcTaggart-Cowan, J. D. (1970),Laboratory investigations of temporary collisions of raindrops, J. Geophys. Res.75, 7573–7580.

    Google Scholar 

  • Magarvey, R. H. andTaylor, B. W. (1956),Free-fall breakup of large drops, J. Appl. Phys.27, 1129–1135.

    Google Scholar 

  • Magarvey, R. H. andGeldart, J. W. (1962),Drop collisions under conditions of free fall, J. Atmos. Sci.,19, 107–113.

    Google Scholar 

  • Marshall, J. S. andPalmer,McK. (1948),The distribution of raindrops with size, J. Meteor.5, 165–166.

    Google Scholar 

  • Matthews, B. J. (1967),Mass loss and distortion of freely falling water drops in an electric field, J. Geophys. Res.72, 3007–3013.

    Google Scholar 

  • McDonald, J. E. (1954),The shape and aerodynamics of large raindrops, J. Meteor.11, 478–494.

    Google Scholar 

  • McTaggart-Cowan, J. D. andList, R. (1975),Collision and breakup of water drops at terminal velocity, J. Atmos. Sci.,32, 1401–1411.

    Google Scholar 

  • Pruppacher, H. R. andPitter, R. (1971),A semi-empirical determination of the shape of cloud and raindrops, J. Atmos. Sci.28, 86–94.

    Google Scholar 

  • Spengler, J. D. andGokhale, N. R. (1972),Freezing of freely suspended, supercooled water drops in a large vertical wind tunnel, J. Appl. Meteor.11, 1101–1107.

    Google Scholar 

  • Srivastava, R. C. (1978),Parameterization of raindrop size distributions, J. Atmos. Sci.35, 108–117.

    Google Scholar 

  • Takahashi, T. (1977),A study of Hawaiian warm rain showers based on aircraft observations, J. Atmos. Sci.34, 1773–1790.

    Google Scholar 

  • Waldvogel, A. (1974),The N 0 jump of raindrop spectra, J. Atmos. Sci.31, 1067–1078.

    Google Scholar 

  • Whelpdale, D. M. andList, R. (1971),The coalescence process in raindrop growth, J. Geophys. Res.76, 2836–2856.

    Google Scholar 

  • Young, K. C. (1975),The evolution of drop spectra due to condensation, coalescence and breakup, J. Atmos. Sci.32, 965–973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, J.R., List, R. Effects of collision-induced breakup on drop size distributions in steady state rainshafts. PAGEOPH 117, 599–626 (1978). https://doi.org/10.1007/BF00879971

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879971

Key words

Navigation