Skip to main content
Log in

Spectral properties of the prototropic forms of fluorescein in aqueous solution

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The commonly used fluorescent probe, fluorescein, can exist in seven prototropic forms. We have used global analysis procedures to reanalyze the absorption data of Diehl and Horchak-Morris (Talanta 34, 739–741, 1987) in terms of five alternative ionization models. We identify the forms of fluorescein present in aqueous solution and the pK a of each ionisation transition. The pKa values of the neutral xanthene, carboxylic acid, and cationic xanthene groups are 6.3, 3.1–3.4, and 3.1–3.4, respectively, and the pKa value of lactonization is 2.4. As a consequence, the neutral form of fluorescein is a mixture of the lactone (70%), zwitterionic (15%), and quinoid (15%) forms. A knowledge of the forms present in solution permits the characterization of their spectral properties. It is shown that the quinoid and monoanion forms have similar absorption spectra, while the zwitterion spectrum is similar to that of the cation but blue-shifted by 3 nm. The emission spectra of the monoanion and quinoid forms are also identified and shown to be similar but not identical. A model for the excited-state reactions of fluorescein is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Lindqvist (1960)Arkiv Kemi 16, 79–138.

    Google Scholar 

  2. V. Zanker and W. Peter (1958)Chem. Ber. 91, 572–580.

    Google Scholar 

  3. R. Sjoback, J. Nygren, and M. Kubista (1995)Spectrochim. Acta A 51, L7-L21.

    Google Scholar 

  4. H. Diehl (1989)Talanta 36, 413–415.

    Google Scholar 

  5. S.-C. Chen, H. Nakamura, and Z. Tamura (1979)Chem. Pharm. Bull. 27, 475–479.

    Google Scholar 

  6. M. M. Martin and L. Lindqvist (1975)J. Lumin. 10, 381–390.

    Google Scholar 

  7. Z. Tamura, T. Morioka, M. Maeda, and A. Tsuji (1994)Bunseki Kagaku 43, 339–346.

    Google Scholar 

  8. M. Rozwadowski (1961)Acta Phys. Pol. 20, 1005–1017.

    Google Scholar 

  9. J. Yguerabide, E. Talavera, J. M. Alvarez, and B. Quintero (1994) Photochem. Photobiol. 60, 435–441.

    Google Scholar 

  10. H. Diehl and N. Horchak-Morris (1987)Talanta 34, 739–741.

    Google Scholar 

  11. P. G. Seybold, M. Gouterman, and J. Callis (1969)Photochem. Photobiol,9, 229–242.

    Google Scholar 

  12. H. Leonhardt, L. Gordon, and R. Livingston (1971)J. Phys. Chem. 75, 245–249.

    Google Scholar 

  13. C. A. Heller, R. A. Henry, B. A. McLaughlin, and D. E. Bliss (1974)J. Chem. Eng. Data 19, 214–219.

    Google Scholar 

  14. L. L. Melhado, S. W. Peltz, S. P. Leytus, and W. F. Mangel (1982) J. Am. Chem. Soc. 104, 7299–7306.

    Google Scholar 

  15. P. M. Boets, H. Van Vreeswijk, A. Vernhaegen, J. D. Hartigh, and J. A. Van Best (1992)Exp. Eye Res. 54, 143–144.

    Google Scholar 

  16. W. R. Ware and B. A. Baldwin (1964)J. Chem. Phys. 40, 1703–1705.

    Google Scholar 

  17. E. A. Bailey and G. K. Rollefson (1953)J. Chem. Phys. 21, 1315–1322.

    Google Scholar 

  18. G. Weber and F. W. J. Teale (1956)Trans. Faraday Soc. 53, 646–655.

    Google Scholar 

  19. M. Kubista, R. Sjoback, and B. Albinsson (1993)Anal. Chem. 65, 994–998.

    Google Scholar 

  20. R. Lopez-Delgato, A. Tramer, and I. H. Munro (1974)Chem. Phys. 5, 72–83.

    Google Scholar 

  21. G. Guyot, R. Arnaud, and J. Lemaire (1975)J. Chim. Phys. 72, 647–653.

    Google Scholar 

  22. E. Gratton, D. M. Jameson, and R. D. Hall (1984)Annu. Rev. Biophys. Bioeng. 13, 105–124.

    Google Scholar 

  23. E. Gardini, S. Dellonte, L. Flamigni, and F. Bargielletri (1980)Gazz. Chim. Ital. 110, 533–537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klonis, N., Sawyer, W.H. Spectral properties of the prototropic forms of fluorescein in aqueous solution. J Fluoresc 6, 147–157 (1996). https://doi.org/10.1007/BF00732054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732054

Key words

Navigation