Skip to main content
Log in

Evidence for water-organized structure in the cuticular water barrier of the American cockroach,Periplaneta americana

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

Cuticle discs cut from the wings ofPeriplaneta and cuticular lipid extracts were analysed by differential scanning calorimetry. Two major endothermic events, one beginning at 7.1±0.3°C, and the other increasing with temperature above 24.7±0.7°C, were associated with extractable lipids in intact cuticle discs. Heating progressively destroyed the molecular structures responsible for the high temperature event but had no effect on the lower one. These results complement changes in cuticle permeability observed in a recent study and thought to be associated with structural change in the cuticular water barrier. The molecular structures responsible for both events depended on the presence of water in the cuticle. Cuticular lipid extracts lack the molecular organization found in intact cuticle, even when water is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beament JWL (1955) Wax secretion in the cockroach. J Exp Biol 32:514–538

    Google Scholar 

  • Beament JWL (1958) The effect of temperature on the water-proofing mechanism of an insect. J Exp Biol 35:494–519

    Google Scholar 

  • Beament JWL (1961) The water relations of insect cuticle. Biol Rev 36:281–320

    Google Scholar 

  • Beament JWL (1964) The active transport and passive movement of water in insects. In: Beament JWL, Treherne JE, Wigglesworth VB (eds) Advances in insect physiology (Vol 2). Academic Press, New York and London, pp 67–129

    Google Scholar 

  • Beament JWL (1965) The active transport of water: evidence, models and mechanisms. Symp Soc Exp Biol 19:273–298

    Google Scholar 

  • Beament JWL (1968) Lipid layers and membrane models. In: Beament JWL, Treherne JE (eds) Insects and physiology. Elsevier, New York, pp 303–314

    Google Scholar 

  • Cook HD, Ries HE (1959) Adsorption of radiostearic acid and radiostearyl alcohol from n-hexadecane onto solid surfaces. J Phys Chem Ithaca 63:226–230

    Google Scholar 

  • Edney EB, McFarlane J (1974) The effect of temperature on transpiration in the desert cockroach,Arenivaga investigata and inPeriplaneta americana. Physiol Zool 47:1–12

    Google Scholar 

  • Filshie BK (1970) The resistance of epicuticular components of an insect to extraction with lipid solvents. Tissue and Cell 2:181–190

    Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Google Scholar 

  • Gelman N, Machin J, Kestler P (1988) The nature of driving forces for passive water transport through arthropod cuticle. J Therm Biol 13:157–162

    Google Scholar 

  • Gilby AR (1980) Transpiration, temperature and lipids in insect cuticle. In: Berridge MJ, Treherne JE, Wigglesworth VB (eds) Advances in insect physiology (Vol 15). Academic Press, New York, pp 1–33

    Google Scholar 

  • Gilby AR, Cox ME (1963) The cuticular lipids of the cockroachPeriplaneta americana (L). J Insect Physiol 9:671–681

    Google Scholar 

  • Lockey KH (1976) Cuticular hydrocarbons ofLocusta, Schistocerca andPeriplaneta, and their role in waterproofing. Insect Biochem 6:457–472

    Google Scholar 

  • Machin J (1980) Cuticle water relations: towards a new cuticle waterproofing model. In: Locke M, Smith DS (eds) Insect biology in the future. Academic Press, New York, pp 79–103

    Google Scholar 

  • Machin J, Lampert GJ (1989) Energetics of water diffusion through the cuticular water barrier ofPeriplaneta: the effect of temperature, revisited. J Insect Physiol 35:437–445

    Google Scholar 

  • Machin J, Lampert GJ, O'Donnell MJ (1985) Component permeabilities and water contents inPeriplaneta integument: role of the epidermis re-examined. J Exp Biol 117:155–169

    Google Scholar 

  • Ramsay JA (1935) The evaporation of water from the cockroach. J Exp Biol 12:373–83

    Google Scholar 

  • Toolson EG, White TR, Glaunsinger WS (1979) Electron paramagenetic resonance spectroscopy of spin-labelled cuticle ofCentruroides sculpturatus (Scorpiones: Buthidae): correlation with thermal effects on cuticular permeability. J Insect Physiol 25:271–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machin, J., Lampert, G.J. Evidence for water-organized structure in the cuticular water barrier of the American cockroach,Periplaneta americana . J Comp Physiol B 159, 739–744 (1990). https://doi.org/10.1007/BF00691719

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691719

Key words

Navigation