Skip to main content
Log in

An extension of the theory of oscillating cup viscometers

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The theory of the fluid motion in the interior of an oscillating or rotating cup is reexamined. The quantity of interest in viscometry is the torque exerted by the fluis on the sides and rims of the cup. In this paper expressions for the torque are obtained for geometries for which the cup height approaches a fluid boundary layer thickness. Interest in such geometries is due to viscosity measurements made in mixtures in the critical region where cups of small height are used in order to minimize gravity effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D(ζ) :

Torque on the cup, Eq. (5)

E(ζ) :

Truncation error term, Eq. (24)

h :

Internal half-height of a filled cup or the height of the liquid in a partially filled cup

I :

Moment of inertia of cup and suspension system

I′ :

Moment of inertia of fluid inside cup

I n :

Modified Bessel function of order n

J i, n :

Defined in Eq. (13)

R :

Radius of the cup

S n :

Defined in Eq. (7)

S n :

Defined in Eq. (10)

x :

Variable 2η 0/π

z :

Variable 2η 0ζ1/2

α(τ) :

Angular displacement of the cup

δ :

Boundary layer thickness

Δ :

Logrithmic decrement

ζ :

Laplace transform variable

η 0 :

Dimensionless height h/δ

θ :

Frequency ratio ω/ω 0

ν :

Kinematic viscosity

ξ 0 :

Dimensionless radius R/δ

ρ :

Density of liquid

τ :

Dimensionless time ω 0 t

φ :

Phase angle of oscillation

ω :

Angular frequency of oscillation with liquid present in cup

ω 0 :

Angular frequency of oscillation in a vacuum

References

  1. See, for example, J. Kestin and I. R. Shankland, J. Appl. Math. Phys. (ZAMP) 32:533 (1981).

    Google Scholar 

  2. R. F. Berg and M. R. Moldover, Rev. Sci. Instrum. 57:1667 (1986); Int. J. Thermophys. 7:675 (1986).

    Google Scholar 

  3. A. G. Azpeitia and G. F. Newell, J. Appl. Math. Phys. (ZAMP) 9A:97 (1957).

    Google Scholar 

  4. A. G. Azpeitia and G. F. Newell, J. Appl. Math. Phys. (ZAMP) 10:15 (1959).

    Google Scholar 

  5. J. C. Nieuwoudt, J. Kestin, and J. V. Sengers, Physica 142A:53 (1987).

    Google Scholar 

  6. R. F. Berg and M. R. Moldover, J. Chem. Phys. 89:3694 (1988).

    Google Scholar 

  7. J. Kestin and G. F. Newell, J. Appl. Math. Phys. (ZAMP) 8:433 (1957).

    Google Scholar 

  8. D. A. Beckwith and G. F. Newell, J. Appl. Math. Phys. (ZAMP) 8:450 (1957).

    Google Scholar 

  9. J. C. Nieuwoudt, J. Kestin, and J. V. Sengers, Physica 147A:107 (1988).

    Google Scholar 

  10. F. W. J. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974), p. 290.

    Google Scholar 

  11. F. W. J. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974), p. 118.

    Google Scholar 

  12. D. Berstad and H. A. Øye, Private discussions.

  13. See, for example, P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 1, (McGraw-Hill, New York, 1953), p. 414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieuwoudt, J.C. An extension of the theory of oscillating cup viscometers. Int J Thermophys 11, 525–535 (1990). https://doi.org/10.1007/BF00500844

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500844

Key words

Navigation