Skip to main content
Log in

Bifurcations of travelling waves in the thermo-diffusive model for flame propagation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The main topic of this paper is the study of steady-state bifurcations occurring in the two-dimensional thermo-diffusive model in the framework of large activation energies.

The physical situation is well established, due to the classical work of Sivashinsky. He derived a dispersion relation and observed that the planar waves bifurcated into stable multidimensional waves as the Lewis number crossed a critical value.

The purpose of this paper is to give a mathematical basis to this theory, furthering a study of D. Terman. We then investigate the bifurcation in detail. Finally, we investigate the three-dimensional case, where a different bifurcation pattern may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon & L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math., 16 (1963), 121–239.

    Google Scholar 

  2. J. Alexander, R. Gardner & C. K. R. T. Jones, A topological invariant arising in the stability analysis of travelling waves, J. reine angew. Math., 410 (1990), 167–212.

    Google Scholar 

  3. C. J. Amick, On the Dirichlet problem for infinite cylinders and equations with transversely, varying coefficients, J. Diff. Eq., 30 (1978), 248–279.

    Google Scholar 

  4. G. I. Barenblatt, Y. B. Zeldovich & A. G. Istratov, On diffusional-thermal stability of a laminar flame, Zh. Prikl. Mekh. Tekh. Fiz., 4 (1962), 21–26.

    Google Scholar 

  5. F. Benkhaldoun & B. Larrouturou, A finite element adaptative investigation of curved stable and unstable flame front, Comp. Meth. in Appl. Science and Eng., 76 (1989), 119–134.

    Google Scholar 

  6. H. Berestycki & B. Larrouturou, Quelques aspects mathématiques de la propagation des flammes prémélangées, Nonlinear partial differential equations and their applications, Collège de France Seminar, 10, Brezis & Lions, eds., Pitman Longman, Harlow (U.K), 1990.

    Google Scholar 

  7. H. Berestycki, B. Larrouturou & P.-L. Lions, Multidimensional travelling wave solutions of a flame propagation model, Arch. Rational Mech. Anal., 111 (1990), 33–49.

    Google Scholar 

  8. H. Berestycki, B. Larrouturou, P.-L. Lions, & J.-M. Roquejoffre, in preparation.

  9. H. Berestycki, B. Larrouturou & J.-M. Roquejoffre, Stability of travelling fronts in a model for flame propagation, Part I: Linear analysis, Arch. Rational Mech. Anal., 117 (1992), 97–117.

    Google Scholar 

  10. H. Berestycki, B. Nicolaenko & B. Scheurer, Travelling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., 16 (1985), 1207–1242.

    Google Scholar 

  11. A. Bonnet, Non-uniqueness for flame propagation when the Lewis number is less than 1, in PhD Thesis “Sur quelques problèmes d'analyse non linéaire avec applications à la combustion”, Université de Paris VI, 1992.

  12. A. Bonnet & L. Glangetas, Non-uniqueness for travelling fronts in the limit of high activation energies, in PhD Thesis of A. Bonnet, “Sur quelques problèmes d'analyse non linéaire avec applications à la combustion”, Université de Paris VI, 1992.

  13. J. D. Buckmaster & G. S. S. Ludford, Theory of laminar flames, Cambridge Univ. Press, Cambridge 1982.

    Google Scholar 

  14. E. A. Coddington & N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.

    Google Scholar 

  15. M. G. Crandall & P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Func. Anal., 8 (1971), 321–340.

    Google Scholar 

  16. M. G. Crandall & P. H. Rabinowitz, Bifurcation, pertubation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161–180.

    Google Scholar 

  17. B. Denet & P. Haldenwang, Numerical study of thermal-diffusive instability of premixed flames, Combust. Sci. Techn., 86 (1992), 199–221.

    Google Scholar 

  18. J. W. Evans, Nerve axon equations IV: the stable and unstable impulse, Indiana Univ. Math. J., 24 (1975), 1169–1190.

    Google Scholar 

  19. V. Giovangigli, Nonadiabatic planar laminar flames and their singular limits, SIAM. J. Math. Anal., 21 (1990), 1305–1325.

    Google Scholar 

  20. L. Glangetas, Etude d'une limite singulière d'un modèle intervenant en combustion, Asymptotic Analysis, 5 (1992), 317–342.

    Google Scholar 

  21. D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Springer Verlag, New York, 1981.

    Google Scholar 

  22. M. W. Hirsch, Differential topology, Springer-Verlag, 1976.

  23. G. Joulin & P. Clavin, Linear stability analysis of non adiabatic flames: diffusional thermal model, Combust. Flame 35 (1979), 139–153.

    Google Scholar 

  24. S. B. Margolis & B. J. Matkowsky, Nonlinear stability and bifurcation in the transition from laminar to turbulent flame propagation, Comb. Sci. Techn., 34 (1983), 44–77.

    Google Scholar 

  25. M. Marion, Qualitative properties of a nonlinear system for laminar flames without ignition temperature, Nonlinear Analysis, TMA, 9 (1985), 1269–1292.

    Google Scholar 

  26. A. M. Micheletti, Perturbazione dello spettro di un operatore ellittico di tipo variazionale, Ann. Mat. Pura Appl., 4 (1973), 267–281.

    Google Scholar 

  27. Y. Nishiura, M. Mimura, H. Ikeda, H. Fujii, Singular limit analysis of stability of travelling wave solutions in bistable reaction-diffusion systems, SIAM J. Math. Anal., 21 (1990), 85–122.

    Google Scholar 

  28. A. Pazy, Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rational Mech. Anal., 24 (1967), 193–218.

    Google Scholar 

  29. M. Reed & B. Simon, Methods of modern mathematical physics, Vol. 4, Academic Press, New York-London (1978), 1972–1979.

    Google Scholar 

  30. J. M. Roquejoffre, Stability of travelling fronts in a model for flame propagation, Part II: Nonlinear stability, Arch. Rational Mech. Anal., 117 (1992), 119–153.

    Google Scholar 

  31. J. M. Roquejoffre & D. Terman, The asymptotic stability of a travelling wave solution arising from a combustion model, Nonlinear Analysis, TMA, to appear.

  32. D. H. Sattinger, Stability of waves of nonlinear parabolic equations, Adv. Math., 22 (1976), 312–355.

    Google Scholar 

  33. G. I. Sivashinsky, Instabilities, pattern formation and turbulence in flames, Ann. Rev. Fluid Mech., 15 (1993), 179–199.

    Google Scholar 

  34. G. I. Sivashinsky, On self-turbulization of a laminar flame, Acta Astronaut., 6 (1979), 569–591.

    Google Scholar 

  35. H. B. Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditons, Trans. Am. Math. Soc., 259 (1980), 299–310.

    Google Scholar 

  36. D. Terman, Stability of planar wave solutions to a combustion model, SIAM J. Math. Anal., 21 (1990), 1139–1171.

    Google Scholar 

  37. A. I. Volpert & V. A. Volpert, Application of the rotation theory of vector fields to the study of wave solutions of parabolic equations, Trans. Moscow Math. Soc. (1990), 59–108.

  38. V. A. Volpert, A. I. Volpert & A. G. Merzhanov, Applications of the theory of bifurcations to the study of nonstationary combustion regimes, Dokl. Akad. Nauk. USSR, 163 (1982), 435–438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P.-L. Lions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glangetas, L., Roquejoffre, J.M. Bifurcations of travelling waves in the thermo-diffusive model for flame propagation. Arch. Rational Mech. Anal. 134, 341–402 (1996). https://doi.org/10.1007/BF00375113

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375113

Keywords

Navigation