Skip to main content
Log in

Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Asymmetry in the visual pathways from the rostral thalamus to the hyperstriatum of the chicken has been found after injecting the retrograde tracer, True Blue (TB), into either the left or right hyperstriatum on day 2 or 12, post-hatching. There are ipsilateral connections from the ventromedial region of the left dorsolateral thalamus, lateral part (DLL) to the left hyperstriatum, and contralateral connections from the left dorsolateral thalamus, rostrolateral part (DLAlr) and the dorsolateral thalamus, dorsal part (DLLd) to the right hyperstriatum. On the right side of the thalamus, the ipsilateral connections from DLL to the right hyperstriatum are present, but there are only very few contralateral connections to the left hyperstriatum. No asymmetry in these pathways is seen in animals injected with TB on day 21. By this age the contralateral connections from the right thalamus to the left hyperstriatum have developed. Thus, the structural asymmetry in these visual pathways is transient, a finding which explains a controversy between two papers published recently in this journal, and which adds considerably to our understanding of the behavioural asymmetries known to occur in the chicken's response to stimuli presented to either the left or right eye. The direction of the asymmetry in visual pathways depends on asymmetrical light input to the eyes of the embryo. Normally the head of the embryo is oriented such that the left eye is occluded. If the head is withdrawn from the egg so that the right eye can be occluded and the left eye exposed to light, the direction of asymmetry in the thalamo-hyperstriatal pathways is reversed. The contralateral connections from the right side of the thalamus (fed by the left eye) to the left hyperstriatum are now present, while those from the left thalamus (fed by the right eye) to the right hyperstriatum are absent. Thus light exposure stimulates the growth of the contralateral connections from the rostral thalamus to hyperstriatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrew RJ, Mench J, Rainey C (1982) Right-left asymmetry of response to visual stimuli in the domestic chick. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behaviour MIT Press, Mass pp 197–209

    Google Scholar 

  • Bentivoglio M, Kuypers HGJM, Catsman-Berrevoets CE, Dann O (1979) Fluorescent retrograde labelling in the rat by means of substances binding specifically to adeninethymine rich DNA. Neurosci Lett 12: 235–240

    Google Scholar 

  • Boxer MI, Stanford D (1985) Projections to the posterior visual hyperstriatal region of the chick: an HRP study. Exp Brain Res 57: 494–498

    Google Scholar 

  • Ehrlich D, Mark RF (1984a) An atlas of the primary visual projections in the brain of the chick Gallus gallus. J Comp Neurol 223: 592–610

    Google Scholar 

  • Ehrlich D, Mark RF (1984b) Topography of primary visual centres in the brain of the chick, Gallus gallus. J Comp Neurol 223: 611–625

    Google Scholar 

  • Ehrlich D, Stuchberry J (1986) A note on the projection from the rostral thalamus to the visual hyperstriatum of the chicken (Gallus gallus). Exp Brain Res 62: 207–211

    Google Scholar 

  • Gaston K, Gaston MG (1984) Unilateral memory after binocular discrimination training: left hemisphere dominance in the chick? Brain Res 303: 190–193

    Google Scholar 

  • Howard KJ, Rogers LJ, Boura ALA (1980) Functional lateralisation of the chicken forebrain revealed by use of intracranial glutamate. Brain Res 188: 369–382

    Google Scholar 

  • Miceli D, Repérant J (1982) Thalamo-hyperstriatal projections in the pigeon (Columbia livia) as demonstrated by retrograde double-labelling with fluorescent tracers. Brain Res 245: 365–371

    Google Scholar 

  • Narang HK (1977) Right-left asymmetry of myelin development in epiretinal portion of rabbit optic nerve. Nature 266: 855–856

    Google Scholar 

  • Repérant J, Raffin J-P, Miceli D (1974) La voie retino-thalamohyperstriatale chez le poussin (Gallus dometicus L.). C R Acad Sci Paris 279: 279–282

    Google Scholar 

  • Rogers LJ (1982) Light experience and asymmetry of brain function in chickens. Nature 297: 223–225

    Google Scholar 

  • Rogers LJ (1986) Lateralization of learning in chicks. Adv Study Behav 16: 147–189

    Google Scholar 

  • Rogers LJ, Anson JM (1979) Lateralisation of function in the chicken forebrain. Pharmacol Biochem Behav 10: 679–686

    Google Scholar 

  • Rogers LJ, Ehrlich D (1983) Asymmetry in the chicken forebrain during development and a possible involvement of the supraoptic decussation. Neurosci Lett 37: 123–127

    Google Scholar 

  • Rogers LJ, Zappia JV, Bullock SP (1985) Testosterone and eyebrain asymmetry for copulation in chickens. Experientia 41: 1447–1449

    Google Scholar 

  • Rogers LJ, Robinson T, Ehrlich D (1986) Role of the supraoptic decussation in the development of asymmetry of brain function in the chicken. Dev Brain Res 28: 33–39

    Google Scholar 

  • Sedlacek J (1972) Development of the optic afferent system in chick embryos. In: Newton G, Reisen A (eds) Advances in psychobiology, Vol 1. Wiley, New York 1: pp 129–170

  • Webster KE (1974) Changing concepts of the organisation of the central visual pathways in birds. In: Bellairs R, Gray EG (eds) Essays on the nervous system. Clarendon Press, Oxford, pp 258–300

    Google Scholar 

  • Zappia JV, Rogers LJ (1983) Light experience during development affects asymmetry of forebrain function in chickens. Dev Brain Res 11: 93–106

    Google Scholar 

  • Zappia JV, Rogers LJ (1987) Sex differences and reversal of brain asymmetry by testosterone in chickens. Behav Brain Res 23: 261–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, L.J., Sink, H.S. Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure. Exp Brain Res 70, 378–384 (1988). https://doi.org/10.1007/BF00248362

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248362

Key words

Navigation