Skip to main content
Log in

GenStar: A method for de novo drug design

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A novel method, which we call GenStar, has been developed to suggest chemically reasonable structures which fill the active sites of enzymes. The proposed molecules provide good steric contact with the enzyme and exist in low-energy conformations. These structures are composed entirely of sp3 carbons which are grown sequentially, but which can also branch or form rings. User-selected enzyme seed atoms may be used to determine the area in which structure generation begins. Alternatively, GenStar may begin with a predocked ‘inhibitor core’ from which atoms are grown. For each new atom generated by the program, several hundred candidate positions representing a range of reasonable bond lengths, bond angles, and torsion angles are considered. Each of these candidates is scored, based on a simple enzyme contact model. The selected position is chosen at random from among the highest scoring cases. Duplicate structures may be removed using a variety of criteria. The compounds may be energy minimized and displayed using standard modeling programs. Also, it is possible to analyze the collection of all structures created by GenStar and locate binding motifs for common fragments such as benzene and naphthylene. Tests of the method using HIV protease, FK506 binding protein (FKBP-12) and human carbonic anhydrase (HCA-II) demonstrated that structures similar to known potent inhibitors may be generated with GenStar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, N.C., Blaney, J.M., Humblet, C., Gund, P. and Barry, D.C., J. Med. Chem., 22 (1990) 883.

    Google Scholar 

  2. Gund, P., Halgren, T.A. and Smith, G.M., Annu. Rep. Med. Chem., 22 (1987) 269.

    Google Scholar 

  3. Marshall, G.R., Annu. Rev. Pharmacol. Toxicol., 27 (1987) 193.

    Google Scholar 

  4. Frühbeis, H., Klein, R. and Wallmeier, H., Angew. Chem. Int. Ed. Engl., 26 (1987) 403.

    Google Scholar 

  5. Snyder, J.P., Med. Chem. Rev., 11 (1991) 641.

    Google Scholar 

  6. Appelt, K., Bacquet, R.J., Bartlett, C.A., Booth, C.L.J., Freer, S.T., Fuhry, M.A.M., Gehring, M.R., Herrmann, S.M., Howland, E.F., Janson, C.A., Jones, T.R., Kan, C.-C., Kathardekar, V., Lewis, K.K., Marzoni, G.P., Matthews, D.A., Mohr, C., Moomaw, E.W., Morse, C.A., Oatley, S.J., Ogden, R.C., Reddy, M.R., Reich, S.H., Schoettlin, W.S., Smith, W.W., Varney, M.D., Villafranca, J.E., Ward, R.W., Webber, S., Webber, S.E., Welsh, K.M. and White, J., J. Med. Chem., 34 (1991) 1925.

    Google Scholar 

  7. Baldwin, J.J., Ponticello, G.S., Anderson, P.S., Christy, M.E., Murcko, M.A., Randall, W.C., Schwam, H., Sugrue, M.F., Springer, J.P., Gautheron, P., Grove, J., Mallorga, P., Viader, M.-P., McKeever, B.M. and Navia, M.A., J. Med. Chem., 32 (1989) 2510.

    Google Scholar 

  8. Navia, M.A. and Murcko, M.A., Curr. Opin. Struct. Biol., 2 (1992) 202.

    Google Scholar 

  9. Fesik, S.W., J. Med. Chem., 34 (1991) 2937.

    Google Scholar 

  10. Brunger, A.T., Kuriyan, J. and Karplus, M., Science, 235 (1987) 458.

    Google Scholar 

  11. Argos, P. and Mohana Rao, J.K., Methods Enzymol., 30 (1986) 185.

    Google Scholar 

  12. Lathrop, R.H., Webster, T.A. and Smith, T.F., Comm. ACM, 30 (1987) 909.

    Google Scholar 

  13. Blundell, T.L., Sibanda, B.L., Sternberg, M.J.E. and Thornton, J.M., Nature, 326 (1987) 347.

    Google Scholar 

  14. Sander, C. and Schneider, R., Proteins Struct. Funct. Genet., 9 (1991) 56.

    Google Scholar 

  15. Kollman, P.A., In Horn, A.S. and Ranter, C.J.D. (Eds.), X-Ray Crystallography and Drug Action, Oxford University Press, London, 1984, pp. 63–82.

    Google Scholar 

  16. Dean, P.M., Molecular Foundations of Drug-Receptor Interaction, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  17. Fersht, A.R., Leatherbarrow, L.J. and Wells, T.N., Biochemistry, 26 (1987) 6030.

    Google Scholar 

  18. Quiocho, F.A., Wilson, D.K. and Vyas, N.K., Nature, 340 (1989) 404.

    Google Scholar 

  19. Sandorfy, C., Buchet, R., Hobza, P. and Ruelle, P., J. Mol. Struct. (Theochem), 107 (1984) 251.

    Google Scholar 

  20. Teeter, M.M. and Whitlow, M.D., Trans. ACA, 22 (1986) 75.

    Google Scholar 

  21. Zuccarello, F. and Del Re, G., J. Comp. Chem., 8 (1987) 816.

    Google Scholar 

  22. Tanford, C., The Hydrophobic Effect., 2nd edn., Wiley, New York, 1980.

    Google Scholar 

  23. Gill, S.J., Pure Appl. Chem., 61 (1989) 1009.

    Google Scholar 

  24. Lebl, M., Sugg, E.E. and Hruby, V.J., Int. J. Pept. Protein Res., 29 (1987) 40.

    Google Scholar 

  25. Homer, J. and Mohammadi, M.S., J. Chem. Soc. Faraday Trans. II, 83 (1987) 1957.

    Google Scholar 

  26. Burkert, U. and Allinger, N.L., In Molecular Mechanics (ACS Monograph Series, No. 177), American Chemical Society Press, Washington, 1982, pp. 39–52.

    Google Scholar 

  27. Still, W.C., Tempczyk, A., Hawley, R.C. and Hendrickson, T., J. Am. Chem. Soc., 112 (1990) 6127.

    Google Scholar 

  28. Arald, J.-C., Nicholls, A., Sharp, K., Honig, B., Tempczyk, A., Hendrickson, T.F. and Still, W.C., J. Am. Chem. Soc., 113 (1991) 1454.

    Google Scholar 

  29. Gilson, M.K. and Honig, B., J. Comput.-Aided Mol. Design, 5 (1991) 5.

    Google Scholar 

  30. Burley, S.K. and Petsko, G.A., Adv. Prot. Chem., 39 (1988) 125.

    Google Scholar 

  31. Thomas, K.A., Smith, G.M., Thomas, T.B. and Feldmann, R.J., Proc. Natl. Acad. Sci. USA, 79 (1982) 4843.

    Google Scholar 

  32. Náray-Szabó, G., J. Mol. Graphics, 7 (1989) 76.

    Google Scholar 

  33. Hayes, D.M. and Kollman, P.A., J. Am. Chem. Soc., 98 (1976) 3335.

    Google Scholar 

  34. Bellido, M.N. and Rullmann, J.A.C., J. Comput. Chem., 10 (1989) 479.

    Google Scholar 

  35. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  36. Boobbyer, D.N.A., Goodford, P.J., McWhinnie, P.M. and Wade, R.C., J. Med. Chem., 32 (1989) 1083.

    Google Scholar 

  37. Danziger, D.J. and Dean, P.M., Proc. R. Soc. London Ser. B, Biol. Sci., 236 (1989) 101.

    Google Scholar 

  38. Danziger, D.J. and Dean, P.M., Proc. R. Soc. London Ser. B, Biol. Sci., 236 (1989) 115.

    Google Scholar 

  39. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.

    Google Scholar 

  40. Miranker, A. and Karplus, M., Proteins Struct. Funct. Genet., 11 (1991) 29.

    Google Scholar 

  41. Goodsell, D.S. and Olsen, A.J., Proteins Struct. Funct. Genet., 8 (1990) 195.

    Google Scholar 

  42. Yue, S.-Y., Prot. Eng., 4 (1990) 177.

    Google Scholar 

  43. Wilson, S.R. and Guarneri, F., Tetrahedron Lett., 32 (1991) 3601.

    Google Scholar 

  44. Lee, R.H. and Rose, G.D., Biopolymers, 24 (1985) 1613.

    Google Scholar 

  45. Lesk, A.M., Acta Crystallogr., A42 (1986) 83.

    Google Scholar 

  46. Lewis, R.A. and Dean, P.M., Proc. R. Soc. London Ser. B, Biol. Sci., 236 (1989) 125.

    Google Scholar 

  47. Lewis, R.A., Dean, P.M., Proc. R. Soc. London Ser B, Biol. Sci., 236 (1989) 141.

    Google Scholar 

  48. Lewis, R.A., J. Comput.-Aided Mol. Design, 4 (1990) 205.

    Google Scholar 

  49. Lewis, R.A., Roe, D.C., Huang, C., Ferrin, T.E., Langridge, R. and Kuntz, I.D., J. Mol. Graphics, 10 (1992) 66.

    Google Scholar 

  50. Bartlett, P.A., Shea, G.T., Telfer, S.J. and Waterman, Spec. Publ., Royal Chem. Soc., 78 (1989) 182.

    Google Scholar 

  51. CAVEAT: A Program to Facilitate the Design of Organic Molecules. Lauri, G., Shea, G.T., Waterman, S., Telfer, S.J., Bartlett, P.A., Version 2.0, University of California at Berkeley.

  52. Van Drie, J.H., Weininger, D. and Martin, Y.C., J. Comput.-Aided Mol. Design, 3 (1989) 225.

    Google Scholar 

  53. Martin, Y.C., Tetrahedron Comp. Methodol., 3 (1990) 15.

    Google Scholar 

  54. Sheridan, R.P., RusinkoIII, A., Nilakantan, R. and Venkataraghavan, R., Proc. Natl. Acad. Sci. USA, 86 (1989) 8165.

    Google Scholar 

  55. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269

    Google Scholar 

  56. DesJarlais, R.L., Sheridan, R.P., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 2149.

    Google Scholar 

  57. DesJarlais, R.L., Sheridan, R.P., Seibel, G.L., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 31 (1989) 722.

    Google Scholar 

  58. DesJarlais, R.L., Seibel, G.L., Kuntz, I.D., Furth, P.S., Alvarez, J.C., 87 De Montellano, P.R.O., DeCamp, D.L., Babé, L.M. and Craik, C.S., Proc. Natl. Acad. Sci. USA, (1990) 6644.

    Google Scholar 

  59. Lawrence, M.C. and Davis, P.C., Proteins Struct. Funct. Genet., 12 (1992) 31.

    Google Scholar 

  60. Bohm, H.-J., J. Comput.-Aided Mol. Design, (1992) 61.

  61. Bernstein, F.C., Koetzle, T.F., Williams, G.T.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., (1977) 535.

  62. Allen, F.H., Kennard, O. and Taylor, R., Acc. Chem. Res., 16 (1983) 146.

    Google Scholar 

  63. Nishibata, Y. and Itai, A., Tetrahedron, 47 (1991) 8985.

    Google Scholar 

  64. Singh, J., Saldanha, J. and Thornton, J.M., Prot. Eng., 4 (1991) 251.

    Google Scholar 

  65. Moon, J.B. and Howe, W.J., Proteins Struct. Funct. Genet., 11 (1991) 314.

    Google Scholar 

  66. Wiberg, K.B. and Murcko, M.A., J. Am. Chem. Soc., 110 (1988) 8029.

    Google Scholar 

  67. Yamashita, M.M., Wesson, L., Eisenman, G. and Eisenberg, D., Proc. Natl. Acad. Sci. USA, 87 (1990) 5648.

    Google Scholar 

  68. InsightII, version 2.1, Biosym Technologies, San Diego, CA.

  69. Connoly, M.L., Science, 221 (1983) 709.

    Google Scholar 

  70. Perry, B.K. and Murcko, M.A., unpublished results.

  71. Moore, J.M., Peattie, D.A., Fitzgibbon, M.J. and Thomson, J.A., Nature, 351 (1991) 248.

    Google Scholar 

  72. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. and Clardy, J., Science, 252 (1991) 839.

    Google Scholar 

  73. Michnick, S.W., Rosen, M.K., Wandless, T.J., Karplus, M. and Schreiber, S.L., Science, 252 (1991) 836.

    Google Scholar 

  74. Van Duyne, G.D., Standaert, R.F., Schreiber, S.L. and Clardy, J., J. Am. Chem. Soc., 113 (1991) 7433.

    Google Scholar 

  75. CHARMM, version 21, Molecular Simulations, Waltham, MA.

  76. Swain, A.L., Miller, M.M., Green, J., Rich, D.J., Schneider, J., Kent, S.B.H. and Wlodawer, A., Proc. Natl. Acad. Sci. USA, 87 (1990) 8805.

    Google Scholar 

  77. Roberts, N.A., Martin, J.A., Kinchington, D., Broadhurst, A.V., Craig, J.C., Duncan, I.B., Galpin, S.A., Handa, B.K., Kay, J., Krohn, A., Lambert, R.W., Merrett, J.H., Mills, J.S., Parkes, K.E.B., Redshaw, S., Ritchie, A.J., Taylor, D.A., Thomas, G.H. and Machin, P.J., Science, 248 (1990) 358.

    Google Scholar 

  78. Krohn, A., Redshaw, S., Ritchie, J.C., Graves, B.J. and Hatada, M.H., J. Med. Chem., 34 (1991) 3340.

    Google Scholar 

  79. Maren, T.H., Drug Dev. Res., 10 (1987) 255.

    Google Scholar 

  80. Eriksson, A.E., Jones, T.A. and Liljas, A., Proteins Struct. Funct. Genet., 4 (1988) 274.

    Google Scholar 

  81. Eriksson, A.E., Kylsten, P.M., Jones, T.A. and Liljas, A., Proteins Struct. Funct. Genet., 4 (1988) 283.

    Google Scholar 

  82. Merck & Company Annual Report, Rahway, NJ, 1990, p. 36.

  83. Murcko, M.A., unpublished results.

  84. Privalov, P.L. and Gill, S.J., Pure Appl. Chem., 61 (1989) 1097.

    Google Scholar 

  85. Privalov, P.L. and Gill, S.J., Adv. Prot. Chem., 39 (1988) 191.

    Google Scholar 

  86. KellisJr., J.T., Nyberg, K., Sali, D. and Fersht, A.R., Nature, 333 (1988) 784.

    Google Scholar 

  87. Rashin, A.A., Iofin, M. and Honig, B., Biochemistry, 25 (1986) 3619.

    Google Scholar 

  88. Eriksson, A.E., Baase, W.A., Zhang, X.-J., Heinz, D.W., Blaber, M., Baldwin, E.P. and Matthews, B.W., Science, 255 (1992) 178.

    Google Scholar 

  89. Reynolds, J.A., Gilbert, D.B. and Tanford, C., Proc. Natl. Acad. Sci. USA, 71 (1974) 2925.

    Google Scholar 

  90. Hermann, R.B., J. Phys. Chem., 76 (1972) 2754.

    Google Scholar 

  91. Sharp, K.A., Nicholls, A., Friedman, R. and Honig, B., Biochemistry, 30 (1991) 9686.

    Google Scholar 

  92. KellisJr., J.T., Nyberg, K., Sali, D. and Fersht, A.R., Nature, 333 (1988) 784.

    Google Scholar 

  93. Chothia, C., J. Mol. Biol., 105 (1976) 1.

    Google Scholar 

  94. Kellis, J.T., Nyberg, K. and Fersht, A.R., Biochemistry, 28 (1989) 4914.

    Google Scholar 

  95. Shortle, D., Stites, W.E. and Meeker, A.K., Biochemistry, 29 (1990) 8033.

    Google Scholar 

  96. Connelly, P.R. and Thomson, J.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 4781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotstein, S.H., Murcko, M.A. GenStar: A method for de novo drug design. J Computer-Aided Mol Des 7, 23–43 (1993). https://doi.org/10.1007/BF00141573

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00141573

Key words

Navigation