Skip to main content
Log in

Effect of phalloidin on the ATPase activity of striated muscle myofibrils

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Phalloidin was shown to increase the ATPase activity and Ca2+ sensitivity of both bovine cardiac and rabbit psoas myofibrils when assayed in a solution containing 50 mm KCl, 100 mm MOPS (pH 7.0), 2 mm MgCl2, 1 mm ATP, 2 mm EGTA, and varying concentrations of Ca2+ (temperature 21–22°C). The phalloidin effect in cardiac myofibrils developed over a time course of several minutes in the presence of 50 μm phalloidin. Relative increase of ATPase activity was maximal at pCa 8 and decreased with decrease in pCa. In cardiac myofibrils the increase was about 70% at pCa 8 and 20% at pCa 4 following 20–30 min pre-incubation with 2 μm or 50 μm phalloidin. The effect persisted after excess phalloidin was washed out. The increase in Ca2+ sensitivity was approximately 0.15 pCa units. For skeletal myofibrils treated with 2 μm phalloidin all changes were considerably less than those seen with cardiac myofibrils and the changes were even less when the myofibrils were exposed to 50 μm phalloidin. These results show that when specifically bound to actin, phalloidin can change the kinetic parameters of the cross-bridge cycle and may also alter the Ca2+ sensitivity of the contractile system. The effects of phalloidin seem to vary with muscle type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABBOTTR. H. (1973) An interpretation of the effects of fiber length and calcium on the mechanical properties of insect flight muscle. Cold Spring Harbor Symp. Quant. Biol. 37, 647–54.

    Google Scholar 

  • ALIEVSKAYAL. L., BUKATINAA. E., GRAFI. A. & SON'KINB. Ya. (1987) Change in pCa-tension characteristic of skate striated muscles in response to phalloidin. Biophysics 32, 105–9.

    Google Scholar 

  • BOELSP. J. & PFITZERG. (1992) Relaxant effect of phalloidin on Triton-skinned microvascular and other smooth muscle preparations. J. Muscle Res. Cell Motil. 13, 71–80.

    Google Scholar 

  • BREMELR. D. & WEBERA. (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nature New Biol. 238, 97–101.

    Google Scholar 

  • BUKATINAA. E., CHAPLEYM. F. & ALIEVSKAYAL. L. (1981) Calcium action on kinetic parameters of muscle contraction. Biophysics 26, 764–6.

    Google Scholar 

  • BUKATINA, A. E., FUCHS, F. & WANG, Y. P. (1993) Phalloidin-induced tension and ATPase changes in skinned striated muscle fibers and myofibrils. Biophys. J. 64, A24.

  • BUKATINAA. E. & MOROZOVV. N. (1979) Effect of phalloidin on the contractile properties of glycerinated skeletal muscle. Biophysics 24, 527–31.

    Google Scholar 

  • BUKATINA, A. E. & MOROZOV, V. N. (1980) Effect of phalloidin on the unsteady kinetics muscle contraction. In Energy transport, protein synthesis, and hormonal control of heart metabolism. NIH Publ. No. 80-2017, pp. 137–45.

  • BUKATINAA. E., SON'KINB. Ya., ALIEVSKAYAL. L. & YASHINV. A. (1984) Sarcomere structures in the rabbit psoas muscle as revealed by fluorescent analogs of phalloidin. Histochemistry 81, 301–4.

    Google Scholar 

  • CANOM. L., CASSIMERISL., JOYCEM. & ZIGMONDS. H. (1992) Characterization of tetramethylrhodaminyl-phalloidin binding to cellular F-actin. Cell Motil. Cytoskeleton 21, 147–58.

    Google Scholar 

  • DANCKERP., LÖWI., HASSELBACHW. & WIELANDT. (1975) Interaction of actin with phalloidin: polymerization and stabilization of F-actin. Biochim. Biophys. Acta 400, 407–14.

    Google Scholar 

  • DESHCHEREVSKIIV. I. (1976) Kinetic model of regulation of muscle protein activity. J. Theor. Biol. 64, 517–34.

    Google Scholar 

  • ESTABROOKW., WILLIAMSONJ. R., FRENKELR. & MAITRAK. (1967) The fluorometric determination of mitochondrial adenine and pyridine nucleotides. In Methods in Enzymology. Vol. 10, Oxidation and Phosphorylation (edited by ESTABROOKK. W. & PULLMANM. E.) pp. 474–82. New York: Academic Press.

    Google Scholar 

  • FABIATOA. & FABIATOF. (1979) Calculator programs for computing the composition of solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. 75, 463–505.

    Google Scholar 

  • FAULSTICHH., SCHÄFERA. J. & WECKAUFM. (1977) The dissociation of phalloidin-actin complex. Hoppe-Seyler's Z. Physiol. Chem. 358, 181–6.

    Google Scholar 

  • FAULSTICHH., ZOBELEYS., HEINTZD. & DREWESG. (1993) Probing the phalloidin binding site of actin. FEBS Lett. 318, 218–22.

    Google Scholar 

  • FAULSTICHH., ZOBELEYS., RINNERTHALERG. & SMALLJ. V. (1988) Fluorescent phallotoxins as probes for filamentous actin. J. Muscle Res. Cell Motil. 9, 370–83.

    Google Scholar 

  • FISKEC. H. & SUBBAROWY. (1925) The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400.

    Google Scholar 

  • FUCHSF. & WANGY. P. (1991) Force, length, and Ca2+-troponin C affinity in skeletal muscle. Am. J. Physiol. 261, C787–92.

    Google Scholar 

  • GRABAREKZ., TANR.-Y., WANGJ., TAOT. & GERGELYJ. (1990) Inhibition of mutant troponin C activity by an intra-domain disulphide bond. Nature 345, 132–5.

    Google Scholar 

  • HOFMANNP. A. & FUCHSF. (1987) Evidence for a force-dependent component of calcium binding to cardiac trophonin C. Am. J. Physiol. 253, C541–6.

    Google Scholar 

  • HOFMANNP. A. & FUCHSF. (1988) Bound calcium and force development in skinned muscle bundles: Effect of sarcomere length. J. Mol. Cell. Cardiol. 20, 667–77.

    Google Scholar 

  • HOLMESK. C., POOPD., GREBHARDW. & KABSCHW. (1990) Atomic model of the actin filament. Nature 347, 44–9.

    Google Scholar 

  • HOLMES, K. C., TIRION, M., BEN-AVRAHAM, D., KABSCH, W., POPP, D. & LORENZ, M. (1992) Structure of F-actin. In Actin' 92. Abstr. Int. Conf. on Biophys., Biochem. and Cell Biol. of Actin. Albany. Aug. 5–9, 1992, pp. 1–2.

  • KABSCHW., MANNHERZH. G., SUCKD., PAIE. F. & HOLMESK. C. (1990) Atomic structure of the actin: DNAase I complex Nature 347, 37–44.

    Google Scholar 

  • KAWAIM., COXR. N. & BRANDTP. W. (1981) Effect of Ca ion concentration on cross-bridge kinetics in rabbit psoas fibers. Biophys. J. 35, 375–84.

    Google Scholar 

  • LENGSFELDA. M., LÖWI., WIELANDT., DANCKERP. & HASSELBACHW. (1974) Interaction of phalloidin with actin. Proc. Natl. Acad. Sci. USA 71, 2803–7.

    Google Scholar 

  • OOSAWAF. (1977) Actin-actin bond strength and the conformational changes of F-actin. Biorheology 14, 11–19.

    Google Scholar 

  • OOSAWAF. (1980) The flexibility of F-actin. Biophys. Chem. 11, 443–6.

    Google Scholar 

  • POPPD., LEDNEVW. & JAHNW. (1987) Methods of preparing well-orientated sols of F-actin containing filaments suitable for X-ray diffraction. J. Mol. Biol. 197, 679–84.

    Google Scholar 

  • PORTZEHLH., ZAORALEKP. & GAUDINJ. (1969) The activation by Ca2+ of the ATPase of extracted muscle fibrils with variation of ionic strength, pH and concentration of MgATP. Biochim. Biophys. Acta 189, 440–8.

    Google Scholar 

  • PROCHNIEWICZ-NAKAYAMAE., YANAGIDAT. & OOSAWAF. (1983) Studies on conformation of F-actin in muscle fibers in the relaxed state, rigor, and during contraction using fluorescent phalloidin. J. Cell Biol. 97, 1663–7.

    Google Scholar 

  • ROBINSONT. F. & WINEGRADS. (1979) The measurement and dynamic implications of thin filament lengths in heart muscle. J. Physiol. 286, 607–19.

    Google Scholar 

  • SMALLJ. V., FURSTD. O. & THORNELLL. E. (1992) The cytoskeletal lattice of muscle cells. Eur. J. Biochem. 208, 559–72.

    Google Scholar 

  • SMITHP. K., KROHNR. I., HERMANSONG. T., MALLIAA. K., GARTNERF. H., FUJIMOTOE. K., GOEKEN. M., OLSONB. J. & KLENKD. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.

    Google Scholar 

  • SOLAROR. J., PANGD. C. & BRIGGSF. N. (1971) The purification of cardiac myofibrils with Triton X-100. Biochim. Biophys. Acta 245, 259–62.

    Google Scholar 

  • SON'KIN, B. YA. (1984) Issledovanie osobennostei elementarnogo mehanohimicheskogo protsessa i ego reguljatsii v myshtse. (Studies of some characteristics of cross-bridge cycle and its regulation.) PhD Thesis. Institute of Biological Physics of the USSR Ac. Sci (in Russian).

  • SON'KINB. Ya., BUKATINAA. E. & WIELANDT. (1983) Effect of phallotoxins on the mechanism of Ca2+ activation of glycerinated fibres of rabbit psoas muscle. Biophysics 28, 892–9.

    Google Scholar 

  • SZSZESNA, D. & LEHRER, S. S. (1992). The visualization of actin filaments in skeletal muscle fibrils with fluorescent-phallotoxins. In Actin '92. Abstr. Int. Conf. on Biophys., Biochem. and Cell Biol. of Actin. Albany, Aug 5–9, 1992, p. 36.

  • VANDEKERCKHOVEJ. & WEBERK. (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. Differentiation 14, 123–33.

    Google Scholar 

  • WEBERA. & HASSELBACHW. (1954) Die Erhohung der Rate ATP-Spaltung durch Myosin- und Actomyosin-Gele bei Beginn der Spaltung. Biochim. Biophys. Acta 15, 237–45.

    Google Scholar 

  • WEHLANDJ., OSBORNM. & WEBERK. (1977) Phalloidin-induced actin polymerization in the cytoplasm of cultured cell interferes with cell locomotion and growth. Proc. Natl. Acad. Sci. USA 74, 5613–17.

    Google Scholar 

  • WIELANDT. (1986) Peptides of Poisonous Amanita Mushrooms. New York: Springer.

    Google Scholar 

  • WILSONP. & FORERA. (1987) Irradiation of rabbit myofibrils with an ultraviolet microbeam. II. Phalloidin protects actin in solution but not in myofibrils from depolymerization by ultraviolet light. Biochem. Cell Biol. 65, 376–85.

    Google Scholar 

  • YANAGIDAT., JAKASEM., NISHIYAMAK. & OOSAWAF. (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60.

    Google Scholar 

  • YATESL. D. & GREASERM. L. (1983) Quantitative determination of myosin and actin in rabbit skeletal muscle. J. Mol. Biol. 168, 123–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukatina, A.E., Fuchs, F. Effect of phalloidin on the ATPase activity of striated muscle myofibrils. J Muscle Res Cell Motil 15, 29–36 (1994). https://doi.org/10.1007/BF00123830

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123830

Keywords

Navigation