Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 55))

Abstract

Hyperthermal atoms are deposited upon a substrate in thin film deposition processes. Even when the atoms in the vapor phase are not intentionally accelerated to the substrate, the vapor phase atoms are attracted to the substrate surface with a potential of a few electron volts (eV) because of the interaction between the incoming atom and the substrate. Some deposition processes such as ion beam assisted deposition(IBAD), ion beam deposition (IBD), sputter deposition(S), and plasma enhanced chemical vapor deposition (PECVD)result in ions striking the substrate with energies from 10 to over 100 eV as shown in figure 1 [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hubler, G.K.(1995) Microstructural evolution during ion beam assisted deposition Mat. Res. Soc. Symp. Proc. 354, 45–55

    Google Scholar 

  2. Bland, R.D., Kominiak, G.J. and Mattox. D.M. (1974) Effect of ion bombardment during deposition on thick metal and ceramic deposits, J. Vac. Si Technol. 11, 671 (1974)

    Article  CAS  Google Scholar 

  3. Thornton, J. A. and Hoffman, D. W., (1989) Stress-related effects in thin films, Thin Solid Films, 171, 5–31.

    Article  Google Scholar 

  4. Greene, J. E. and Barnett, S. A. (1982), Ion-surface interactions during vapor phase crystal growth by sputtering MBE, and plasma-enhanced CVD: Applications to semiconductors, J. Vac. Sci. Technol. 21(2), 235–302.

    Article  Google Scholar 

  5. Windischmann, H, (1991) Intrinsic stress in sputtered thin films, J. Vac. Sci. Technol. A 9(4), 2431–2436.

    Article  Google Scholar 

  6. Baibich, M. N., Broto, J. M., Fert, A., Nguyen-Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J. (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61(21), 2472–2475.

    Article  CAS  Google Scholar 

  7. Levy, P.M., Zhang S, and Fert, A. (1990) Electrical conductivity of magnetic multilayered structures, Phys. Rev. Lett. 65(13) 1643–1646.

    Article  CAS  Google Scholar 

  8. Fullerton, E.E., Kelly, D.M., Guimpel, J. and Schuller, I.K. (1992) Roughness and giant magnetoresistance in Fe/Cr superlattices, Phys. Rev. Lett. 68(6), 859–862.

    Article  CAS  Google Scholar 

  9. Schwebel, C, Meyer, F., Gautherin, G., and Pellet, C., (1986) Growth of silicon homoepitaxial thin films by ultra high vacuum ion beam sputter deposition, J.Vac. Sci.Techol. B, 4(5), 1153–1158.

    Article  CAS  Google Scholar 

  10. Al-Bayati, A.H., Todorov, S.S., Boyd. K.J., Marton, D., and Rabalais, J.W. (1995) Homoepitaxy and controlled oxidation of silicon at low temperatures using low-energy ion beams J. Vac. Sci. Technol. B. 13(4) 1639–1644.

    Article  CAS  Google Scholar 

  11. Eaglesham, D.J., Gossmann, H.J. and Cerullo, M. (1990) Limiting thickness hepi for epitaxial growth and room temperature Si growth on Si(100), Phys. Rev. Lett. 65(10) 1227–1230.

    Article  CAS  Google Scholar 

  12. Vancauwenberghe, O., Herbots, N., and Hellman, O.C. (1991) A quantitative model of point defect diffusivity and recombination in ion beam deposition and combined ion and molecular deposition, J.Vac. Sci. Tchnol.B. 9(4) 2027–2033.

    Article  Google Scholar 

  13. Gordon, J.S., Armour, D.G., Donnelly. S.E., van-den Berg, J., Marton, D., and Rabalais, J.W. (1991) A dual-source low-energy mass-analysed ion beam system for semiconductor epitaxial and novel materials growth, Nucl. Instrm. Meth., Phys. Res., B 59/60(1), 312–315.

    Article  Google Scholar 

  14. Brice, D.K., Tsao, J.Y., and Picraux, S.T. (1989) Partitioning of ion-induced surface and bulk displacelments, Nucl. Instrum. Mehtods B 44, 68–78.

    Article  Google Scholar 

  15. Ghaly, M., Nordlund, K., and Averback, R. S. (1999) Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids, Phil. Mag. A 79(4) 795–820.

    Article  CAS  Google Scholar 

  16. Davis, P.J., and Polonsky, I. (1965) Numerical interpolation, differentiation, and integration, Handbook of mathematical functions, Eds. Abramowitz, M. and Stegun, I.A., National Bureau of Standards, Applied mathematics series 55, 3 rd printing, U.S. Government Printing Office, Washington D.C. 875–920.

    Google Scholar 

  17. Beeman, D., (1976) Some multistep methods for use in molecular dynamics calculations, J. Comput. Phys. 20, 130–139.

    Article  Google Scholar 

  18. Leamy, H.J., Gilmer, G.H. and Dirks, A.G. (1980) The microstructure of vapor deposited thin films, in Current Topics in Materials Science, Vol. 6 ed. Kaldis, E. North-Holland, New York, 309–344.

    Google Scholar 

  19. Gordon, R.G. and Kim, Y.S. (1972) Theory for the forces between closed-shell atoms and molecules, J. Chem. Phys. 56, 3122–3133.

    Article  CAS  Google Scholar 

  20. Muller, K.-H. (1987) Ion-beam-induced epitaxial vapor-phase growth: A molecular dynamics study, Phys. Rev. B. 35(15),7906–7913.

    Article  Google Scholar 

  21. Muller, K.-H. (1987) Role of incident kinetic energy of adatoms in thin film growth, Surf. Sci. 184, L375-382.

    Google Scholar 

  22. Schneider, M., Rahman, A., and Schuller, I.K. (1985) Role of relaxation in epitaxial growth, Phys. Rev. Lett. 55(6), 604–606.

    Article  CAS  Google Scholar 

  23. Gilmore, C.M. and Sprague, J.A. (1991) Molecular-dynamics simulation of the energetic deposition of Ag thin films, Phys. Rev. B, 44(16) 8950–8957.

    Article  CAS  Google Scholar 

  24. Sprague. J.A. and Gilmore, C.M.(1992) Molecular dynamics simulations of low-energy atom-surface interactions MRS Proc. Pittsburgh, PA, 268,115–125.

    Google Scholar 

  25. Gilmore, C.M. and Sprague, J.A. (1992) A molecular dynamics analysis of low energy atom-surface interaction during energetic deposition of silver thin films, Surf. Coatings Technol. 51, 324–327

    Article  CAS  Google Scholar 

  26. Gilmore, C.M. and Sprague, J.A. (1997) Computer modeling the deposition of nanoscale thin films. Nanostruct. Mat. 9, 643–650.

    Article  CAS  Google Scholar 

  27. Gilmore, C.M. and Sprague. J.A. (1993) Molecular dynamics simulations of thin film growth on Ag(100) and (111) with energetic Ag atoms, Nanostruct. Mat. 2, 301–310.

    Article  CAS  Google Scholar 

  28. Sprague. J.A. and Gilmore, C.M. (1996) Molecular dynamics simulations of film-substrate interface mixing in the energetic deposition of fcc metals, Thin Solid Films, 272, 244–254

    Article  CAS  Google Scholar 

  29. Gilmore, C.M. and Sprague. J.A., Effect of incident energy on defect formation during Cu deposition, to be published

    Google Scholar 

  30. Foiles, S.M., Baskes, M.I., and Daw, M.S. (1986) Embedded-atom-method functions for the fee metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33, 7983–7991.

    Article  CAS  Google Scholar 

  31. Rose, J.H., Smith, J.R., Guinea, F. and Ferrante, J. (1984) Universal features of the equation of state of metals, Phys. Rev. B. 29, 2963–2969

    Article  CAS  Google Scholar 

  32. Sprague, J. A. (2001) unpublished results.

    Google Scholar 

  33. Zhang, Q. Y., Tang, J. Y., and Zhao, G. Q. (1998) Investigation of the energetic deposition of Au (001) films by molecular-dynamics simulation, Nucl. Instrum. and Meth. in Phys. Res. B 135, 289–294.

    Article  CAS  Google Scholar 

  34. Zhang, Q. Y., Ma, T. C., Pan, Z. Y., and Tang, J. Y. (2000) The role of energetic atoms in the deposition of Au/Au (001) thin films — a computer simulation study, Surf. and Coatings Technol. 128–129, 175–180.

    Article  Google Scholar 

  35. Trushin, O. S., Kokko, K., and Salo, P. T. (1999) Film-substrate interface mixing in the energetic deposition of Ag on Cu (001), Surface Science 442, 420–430.

    Article  CAS  Google Scholar 

  36. Zhou, X. W. and Wadley, H. N. G. (1999) Hyperthermal vapor deposition of copper: athermal and biased diffusion effects, Surface Science 431(1–3) 42–57.

    Article  CAS  Google Scholar 

  37. Zhou, X. W. and Wadley, H. N. G. (1999) Hyperthermal vapor deposition of copper: reflection and resputtering effects, Surface Science 431(1–3) 58–73.

    Article  CAS  Google Scholar 

  38. Zhou, X. W. and Wadley, H. N. G. (1998) Atomistic simulations of the vapor deposition of Ni/Cu/Ni multilayers: The effects of adatom incident energy, J. Appl. Phys. 84(4) 2301–2315.

    Article  CAS  Google Scholar 

  39. Zhou, X. W. and Wadley, H. N. G. (2000) The low energy ion assisted control of interfacial structure: Ion incident energy effects, J. Appl. Phys. 87(12) 8487–8496.

    Article  CAS  Google Scholar 

  40. Oh, D. J. and Johnson, R. A. (1988) Simple embedded atom method model for fcc and hep metals, J. Mater. Res. 3(3) 471–478.

    Article  CAS  Google Scholar 

  41. Sprague, J.A. private communication

    Google Scholar 

  42. Wilson, W.D., Haggmark, L.G., and Biersack, J.B. (1977) Calculations of nuclear stopping, ranges, and straggling in the low-energy region, Phys. Rev.B. 15(5) 2458–2468

    Article  CAS  Google Scholar 

  43. Abrams, C. F. and Graves, D. B. (1999), Cu sputtering and deposition by off-normal, near-threshold Cu+ bombardment: Molecular dynamics simulations, J. Appl. Phys. 86(4) 2263–2267.

    Article  CAS  Google Scholar 

  44. Hanson, D. E., Kress, J. D., Voter, A. F., and Liu, X.-Y. (1999) Trapping and desorption of energetic Cu atoms on Cu (111) and (001) surfaces at grazing incidence, Phys. Rev. B 60(16) 11723–11729.

    Article  CAS  Google Scholar 

  45. Robbemond, A. and Thijsse, B. J. (1997) Ion-beam assisted deposition of thin molybdenum films studied by molecular dynamics simulation, Nucl. Instrum. and Meth. in Phys. Res. B 127/128, 273–277.

    Article  CAS  Google Scholar 

  46. Klaver, P., Haddeman, E., and Thijsse, B. J. (1999) Atomic-scale effects of sub-keV ions during growth and subsequent ion-beam analysis of molybdenum thin films, Nucl. Instrum. and Meth. in Phys. Res. B 153, 228–235.

    Article  CAS  Google Scholar 

  47. Rakotomahevitra, A., Wille, L. T., and Rakotomalala, M. S. (2000) Atomistic modeling of ultrathin Fe films on Cu (111), Mat. Res. Soc. Symp. Proc. Vol. 616, 183–188.

    Article  CAS  Google Scholar 

  48. Rabalais, J.W., Al-Bayati, A.H., Boyd, K.J., Marton. D., Kulik, J., Zhang, Z., and Chu. W.K. (1996) Ion-energy effects in silicon ion beam epitaxy, Phys.Rev, B. 53(16) 10781–10792.

    Article  CAS  Google Scholar 

  49. Orrman-Rossiter, K.G., Al-Bayati, A.H., Armour, D.G., Donnelly, S.E., and van-den Berg, J.A. (1991) Ion beam deposited epitaxial thin silicon films, Nucl. Inst. Meth. Phys. Res. B 59/60(1) 197–202.

    Article  Google Scholar 

  50. Orrman-Rossiter, K.G., Mitchell, D.R.G., Donnelly. S.E., Rossouw, C.J., Glanvill, S.R., Miller, P.R., Al-Bayati, A.H., Van-den-Berg, J.A. and Armour. D.G. (1990) Evidence for competing growth phases in ion-beam-deposited epitaxial silicon films, Phil.Mag. Lett. 61, 311–318.

    Article  CAS  Google Scholar 

  51. Stillinger, F.H. and Weber, T.A. (1985) Computer simulation of local order in condensed phases of silicon, Phys. Rev. B. 31(8), 5262–5271

    Article  CAS  Google Scholar 

  52. Tersofly. (1988) New empirical approach for the structure and energy of covalent systems. Phys. Rev. B., 37(12) 6991–7000.

    Article  Google Scholar 

  53. Dodson, B.W. (1987) Molecular-dynamics simulation of low-energy beam deposition of silicon, J. Vac. Sci. Technol. B 5(5), 1393–1398.

    Article  CAS  Google Scholar 

  54. Dodson, B.W., and Taylor, P.A. (1987) Interaction of a 10 eV silicon beam with the Si(111) surface: A molecular dynamics study, J. Mater. Res. 2(6), 805–808.

    Article  CAS  Google Scholar 

  55. Dodson. B.W. (1987) Atomistic simulation of silicon beam deposition, Phys. Rev. B 36(2), 1068–1074.

    Article  CAS  Google Scholar 

  56. Kitabatake, M., Fons, P. and Greene, J.E., (1990) Molecular dynamics simulations of low-energy particle bombardment effects during vapor-phase crystal growth: 10 eV Si atoms incident on Si(001)2xlsurfaces, J. Vac. Sci. Technol. A 8(5) 3726–3735.

    Article  CAS  Google Scholar 

  57. Gilmer, G.H., Grabow, M.H. and Bakker, A.F. (1990) Modeling of epitaxial growth, Mater. Sci. Engr. B(6), 101–112.

    Google Scholar 

  58. Gilmer. G.H., and Roland, C. (1994) Simulations of crystal growth:Effects of atomic beam energy, App. Phys. Lett. 65(7) 824–826.

    Article  CAS  Google Scholar 

  59. Garrison, B.J., Miller, M.T., and Brenner, D.W. (1988) Kinetic energy enhanced molecular beam epitaxial growth of Si{100}, Chem. Phys. Lett. 146(6), 553–556.

    Article  CAS  Google Scholar 

  60. Fallon, P. J., Veerasamy, V. S., Davis, C. A., Robertson, J., Amartunga, G. A. J., Milne, W. I., and Koskinen, J. (1993) Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy, Phys. Rev. B 48(7) 4777–4782.

    Article  CAS  Google Scholar 

  61. Kulik, J., Lempert, G. D., Grossman, E., Marton, D., Rablais, J. W., and Lifshitz, Y. (1995) sp3 content of mass-selected ion-beam-deposited carbon films determined by inelastic and elastic electron scattering, Phys. Rev. B 52(22) 15812–15822.

    Article  CAS  Google Scholar 

  62. Kaukonen, H.-P. and Nieminen, R. M. (1992) Molecular dynamics simulation of the growth of diamondlike films by energetic carbon-atom beams, Phys. Rev. Lett. 68(5) 620–623.

    Article  CAS  Google Scholar 

  63. Kaukonen, M. and Nieminen, R. M. (2000) Atomic-scale modeling of the ion-beam-induced growth of amorphous carbon, Phys. Rev. B 61(4) 2806–2811.

    Article  CAS  Google Scholar 

  64. Lifshitz, Y., Kasi, S. R., and Rablais, J. W. (1989) Subplantation model for film growth from hyperthermal species: application to diamond, Phys. Rev. Lett. 63(11) 1290–1293.

    Article  Google Scholar 

  65. Marks, N. A., McKenzie, D. R., and Pailthorpe, B. A. (1996) Molecular dynamics study of compressive stress generation, Phys. Rev. B 53(7) 4117–4124.

    Article  CAS  Google Scholar 

  66. Uhlmann, S., Frauenheim, T., and Lifshitz, Y. (1998) Molecular-dynamics study of the fundamental processes involved in subplantation of diamondlike carbon, Phys. Rev. Lett. 81(3) 641–644.

    Article  CAS  Google Scholar 

  67. Jager, H. U. and Albe, K. (2000) Molecular dynamics simulations of steady-state growth of ion-deposited tetrahedral amorphous carbon films, J. Appl. Phys. 88(2) 1129–1135.

    Article  CAS  Google Scholar 

  68. Brenner, D. W. (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys, Rev. B 42(15) 9458–9471.

    Article  CAS  Google Scholar 

  69. Brenner, D. W. (1992) Erratum: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films [Phys. Rev. B 42 9458 (1990)], Phys. Rev. B 46(3) 1948.

    Article  CAS  Google Scholar 

  70. Kester, D. J. and Messier, R. (1992) Phase control of cubic boron nitride thin films, J. Appl. Phys. 72(2) 504–513.

    Article  CAS  Google Scholar 

  71. Hofsass, H., Feldermann, M., Sebastian, M., and Ronning, C. (1997) Thresholds for the phase formation of cubic boron nitride thin films, Phys. Rev. B 55(19) 13230–13233.

    Article  CAS  Google Scholar 

  72. Albe, K. and Moller, W. (1998) Modeling of boron nitride: atomic scale simulations on thin film growth, Computational Materials Science 10, 111–115.

    Article  CAS  Google Scholar 

  73. Coronell, D.G., Hansen, D.E., Voter, A.F., Liu, C-L., Liu, X-Y., and Kress, J.D. (1998) Molecular dynamics-based ion-surface interaction models for ionized physical vapor deposition feature scale simulations, Appl. Phys. Lett. 73(26) 3860–3862

    Article  CAS  Google Scholar 

  74. Ogale, S.B. and Madhukar, (1989) Low-energy ion beam effects on the molecular beam epitaxial growth of III–IV compound semiconductors: A Monte Carlo simulation study, Appl. Phys. Lett. 55(11) 1115–1117.

    Article  CAS  Google Scholar 

  75. Voter, A. F. (1998) Parallel replica method for dynamics of infrequent events, Phys. Rev. B 57(22) R13985–R13988.

    Article  CAS  Google Scholar 

  76. Voter, A. F. (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events, Phys. Rev. Lett. 78(20) 3908–3911.

    Article  CAS  Google Scholar 

  77. Sorensen, M. R. and Voter, A. F. (2000) Temperature-accelerated dynamics for simulation of infrequent events, J. Chem. Phys. 112(21) 9599–9606.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gilmore, C.M., Sprague, J.A. (2002). Molecular Dynamics Simulation of Thin Film Growth with Energetic Atoms. In: Pauleau, Y. (eds) Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0353-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0353-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0525-1

  • Online ISBN: 978-94-010-0353-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics