Skip to main content

Abstract

The recognition of acute myocardial infarcts is not always easily accomplished. Infarct recognition is especially difficult using electrocardiography in individuals who had previous myocardial infarcts, those with left bundle branch block, those who have been cardioverted, and those with acute non-transmural (subendocardial) myocardial infarcts. Even the most sophisticated enzymatic techniques presently available have certain limitations in identifying the presence of absence of acute myocardial infarcts in patients including: (1) there is a temporal dependency in the ability of various enzyme markers to detect acute myocardial infarcts, and (2) certain clinical settings preclude using traditional enzyme techniques (including creatine kinase — MB isoenzyme) for infarct recognition and to be emphasized in this regard is the perioperative and postoperative setting after coronary artery revascularization. Therefore, it is important to have additional relatively noninvasive means that allow infarct detection, localization and provide some estimate of the size of the lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonte FJ, Parkey RW, Graham KD, et al.: A new method for radionuclide imaging of acute myocardial infarcts. Radiology 110:473, 1974.

    PubMed  CAS  Google Scholar 

  2. Parkey RW, Bonte FJ, Meyer SL, et al.: A new method for radionuclide imaging of acute myocardial infarction in humans. Circulation 50:540, 1974.

    PubMed  CAS  Google Scholar 

  3. Willerson JT, Parkey RW, Bonte FJ, et al.: Technetium stannous pyrophosphate myocardial scintigrams in patients with chest pain of varying etiology. Circulation 51:1046, 1975.

    PubMed  CAS  Google Scholar 

  4. Willerson JT, Parkey RW, Bonte FJ, et al.: Acute subendocardial myocardial infarcts detected by technetium-99m stannous pyrophosphate myocardial scintigrams. Circulation 51:436, 1975.

    PubMed  CAS  Google Scholar 

  5. Willerson JT, Parkey RW, Bonte FJ, et al.: Technetium-99m stannous pyrophosphate myocardial scintigraphy: A new method of proven value for the diagnosis and localization of acute myocardial infarcts and for the detection of infarct extension in patients. Tex Med 72:61, 1976.

    PubMed  CAS  Google Scholar 

  6. Buja LM, Parkey RW. Dees JH, et al.: Morphologic correlated of technetium-99m stannous pyrophosphate imaging of acute myocardial infarcts in dogs. Circulation 52:596, 1975.

    PubMed  CAS  Google Scholar 

  7. Buja LM, Parkey RW, Stokely EM, et al.: Pathophysiology of technetium-99m stannous pyrophosphate and thallium-201 scintigraphy of acute anterior myocardial infarcts in dogs. J Clin Invest 57; 1508, 1976.

    Article  PubMed  CAS  Google Scholar 

  8. Platt MR, Parkey RW, Willerson JT, et al.: Technetium-99m stannous pyrophosphate myocardial scintigrams in the recognition of myocardial infarction in patients undergoing coronary artery revascularization. Ann Thorac Surg 21:311, 1976.

    Article  PubMed  CAS  Google Scholar 

  9. Platt MR, Mills LJ, Parkey RW, et al.: Perioperative myocardial infarction diagnosed by technetium-99m stannous pyrophosphate myocardial scintigrams. Circulation 54(Suppl III):24, 1976.

    Google Scholar 

  10. Donsky MS, Curry GC, Parkey RW, et al.: Unstable angina pectoris: Clinical, angiographic, and myocardial scintigraphic observations. Br Heart J 38:257, 1976.

    Article  PubMed  CAS  Google Scholar 

  11. Pugh BR, Buja LM, Parkey RW, et al.: Cardioversion and its potential role in the production of “false positive” technetium-99m stannous pyrophosphate myocardial scintigrams. Circulation 54:399, 1976.

    PubMed  CAS  Google Scholar 

  12. Harford W, Weinberg M, Buja LM, et al.: Positive technetium-99m stannous pyrophosphate myocardial scintigram in a patient with carcinoma of the lung. Radiology122:747, 1977.

    PubMed  CAS  Google Scholar 

  13. Stokely EM, Buja Lm, Lewis SE, et al.: Measurement of acute myocardial infarcts in dogs with technetium-99m stannous pyrophosphate scintigrams. J Nucl Med 17:1, 1976.

    PubMed  CAS  Google Scholar 

  14. Willerson JT, Parkey RW, Stokely EM, et al.: Infarct sizing with technetium-99m stannous pyrophosphate scintigraphy in dogs and man; the relationship between scintigraphic and precordial mapping estimates of infarct size in patients. Cardiovasc Res 11:291, 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Buja LM, Tofe AJ, Kulharni PV, et al.: Sites and mechanisms of localization of technetium-99m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. J Clin Invest 60:724, 1977.

    Article  PubMed  CAS  Google Scholar 

  16. Parkey RW, Bonte FJ, Stokely EM, et al.: Acute myocardial infarction imaged with techne-tium-99m stannous pyrophosphate and thallium 201: a clinical evaluation. J Nucl Med 17:771, 1976.

    PubMed  CAS  Google Scholar 

  17. Lewis M, Buja LM, Saffer S, et al.: Experimental infarct sizing utilizing computer processing and a three-dimensional model. Science 197:167, 1977.

    Article  PubMed  CAS  Google Scholar 

  18. Poliner LR, Buja LM, Parkey RW, et al.: Clinicopathologic findings in 52 patients studied by technetium-99m stannous pyrophosphate myocardial scintigrams. Circulation 59:257, 1979.

    PubMed  CAS  Google Scholar 

  19. Rude R, Parkey RW, Bonte FJ, et al.: Clinical implications of the “doughnut” pattern of uptake in technetium-99m stannous pyrophosphate myocardial scintigrams in patients with acute myocardial infarction. Circulation 59:721, 1979.

    PubMed  CAS  Google Scholar 

  20. Shen AC, and Jennings RB: Myocardial calcium and magnesium in acute ischemic injury. Am J Pathol 67:417, 1972.

    PubMed  CAS  Google Scholar 

  21. D’Agostino AN: An electron microscopic study of cardiac necrosis produced by 9 a-fluorocortisol and sodium phosphate. Am J Pathol 45:633, 1964.

    Google Scholar 

  22. Perez LA: Clinical experience: technetium 99m labeled phosphates in myocardial imaging. Clin Nucl Med 1:2, 1976.

    Article  Google Scholar 

  23. Bruno FP, Cobb FR, Rivas F, et al.: Evaluation of 99mtechnetium stannous pyrophosphate as an imaging agent in acute myocardial infarction. Circulation 54:71, 1976.

    CAS  Google Scholar 

  24. Zaret BL, DiCola VC, Donabedian RK, et al.: Dual radionuclide study of myocardial infarction. Relationship between myocardial uptake of potassium-43, technetium-99m stannous pyrophosphate, regional myocardial blood flow and creatine phosphokinase depletion. Circulation 53:422, 1976.

    PubMed  CAS  Google Scholar 

  25. Poliner LR, Buja LM, Parkey RW, et al.: Comparative evaluation of several different noninvasive methods of infarct sizing during experimental myocardial infarction. J Nucl Med 18:517, 1977.

    PubMed  CAS  Google Scholar 

  26. Buja LM, Poliner L, Parkey RW, et al.: Clinicopathologic findings in patients with persistently positive technetium-99m stannous pyrophosphate myocardial scintigrams and myocy-tolytic degeneration after acute myocardial infarction. Circulation 56:1016, 1977.

    PubMed  CAS  Google Scholar 

  27. Falkoff M, Parkey RW, Bonte FJ, et al.: Technetium-99m Stannous pyrophosphate myocardial scintigraphy: the need for serial imaging to detect myocardial infarcts in patients. Clin Cardiol 1:163, 1978.

    Google Scholar 

  28. Rude RE, Rubin HS, Stone MJ, et al.: Radioimmunoassay of serum creatine kinase isoenzyme: Correlation with technetium-99m stannous pyrophosphate myocardial scintigraphy in the diagnosis of acute myocardial infarction. Am J Med 68:405, 1980).

    Article  PubMed  CAS  Google Scholar 

  29. Pulido JI, Parkey RW, Lewis SE, et al.: Acute subendocardial myocardial infarction: Its detection by technetium-99m stannous pyrophosphate myocardial scintigraphy. Clin Nucl Med 5:191, 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Willerson JT, Parkey RW, Buja LM, et al.: Technetium-99m stannous pyrophosphate “hot spot” imaging to detect acute myocardial infarcts. In: Nuclear cardiology, p 139, Willerson JT, ed. Philadelphia: F.A. Davis, 1979.

    Google Scholar 

  31. Lyons KP, Olson HG, et al: Persistence of an abnormal pattern of 99mTc pyrophosphate myocardial scintigraphy following acute myocardial infarction. Clin Nucl Med 1:253, 1976.

    Article  Google Scholar 

  32. Keyes JW Jr, Orlandea N, Heetclerks WJ, et al.: The humongotron — a scintillation camera transaxial tomograph. J Nucl Med 18:381, 1977.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Martinus Nijhoff Publishers bv. The Hague

About this chapter

Cite this chapter

Willerson, J.T., Parkey, R.W., Bonte, F.J., Lewis, S.E., Stokely, E., Maximilian Buja, L. (1980). Technetium-99m-Pyrophosphate Myocardial Imaging in Acute Myocardial Infarction. In: Wackers, F.J.T. (eds) Thallium-201 and Technetium-99m-Pyrophosphate Myocardial Imaging in the Coronary Care Unit. Developments in Cardiovascular Medicine, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8904-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8904-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8906-1

  • Online ISBN: 978-94-009-8904-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics