Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 159))

Abstract

Fatigue crack growth is presently being treated almost exclusively within the theoretical framework of fracture mechanics. This trend is following the pioneering work of Paris and his co-workers, which date back some 25 years (1). However, at that time several other parameters than K, the stress intensity factor, were being used to correlate fatigue crack growth rates and it is rather interesting to recall that the original paper (1) was rejected by three leading journals, whose reviewers felt that “it is not possible that an elastic parameter such as K can account for the self-evident plasticity effects in correlating fatigue crack growth rates” (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paris, P.C., Gomez, M. and Anderson, W.E., “A Rational Analytic Theory of Fatigue”, Trend in Engineering, 13, No. 1, Univ. of Washington, U.S.A., 1961.

    Google Scholar 

  2. Paris P.C., “Twenty Years of Reflection on Questions involving Fatigue Crack Growth. Part I: Historical Observations and Perspectives”, Fatigue Thresholds, Eds. J. Bäcklund, A.F. Blom and C.J. Beevers, EMAS Ltd., Warley, U.K., Vol. 1, pp. 3–10, 1982.

    Google Scholar 

  3. Paris, P.C. and Erdogan, F., “A Critical Analysis of Crack Propagation Laws”, J. of Basic Engng, 85, pp. 528–534, 1963.

    Google Scholar 

  4. Forsyth, P.J.E., “The Physical Basis of Metal Fatigue”, Clarendon Press, Oxford, U.K., 1969.

    Google Scholar 

  5. Ritchie, R.O., “Near-threshold Fatigue Crack Propagation in Steels”, Int. Met. Rev. 20, pp. 205–230, 1979.

    Google Scholar 

  6. Bäcklund, J., Blom, A.F. and Beevers, C.J., Eds. “Fatigue Thresholds”, 2 volumes, EMAS Ltd., Warley, U.K., 1982.

    Google Scholar 

  7. Davidson, D.L. and Suresh, S., Eds., “Fatigue Crack Growth Threshold Concepts”, TMS-AIME, Warrendale, PA, U.S.A., 1984.

    Google Scholar 

  8. Saxena, A., Hudak, Jr., S.J. and Jouris, G.M., “A Three Component Model for Representing Wide Range Fatigue Crack Growth Data”, Eng Frac. Mech., 12, pp. 103–115, 1979.

    Article  Google Scholar 

  9. Miller, M.S. and Gallagher, J.P., “An Analysis of Several Fatigue Crack Growth Rate (FCGR) Descriptions”, Fatigue Crack Growth Measurement and Data Analysis, ASTM STP 738, S.J. Hudak, Jr. and R.J. Bucci, Eds., American Society for Testing and Materials, Philadelphia, PA, U.S.A., pp. 205–251, 1981.

    Google Scholar 

  10. Rice, J.R., “Mechanics of Crack Tip Deformation and Extension by Fatigue”, Fatigue Crack Propagation, ASTM STP 415, American Society for Testing and Materials, Philadelphia, PA, U.S.A., pp. 247–309, 1967.

    Google Scholar 

  11. Laird, C, “The Influence of Metallurgical Structure on the Mechanisms of Fatigue Crack Propagation”, Fatigue Crack Propagation, ASTM STP 415, American Society for Testing and Materials, Philadelphia, PA, U.S.A. ibid., pp. 131–168, 1967.

    Google Scholar 

  12. Laird, C. and Smith, G.C., “Crack Propagation in High Stress Fatigue”, Philosophical Magazine, 7, pp. 847–857, 1962.

    Article  Google Scholar 

  13. Weertman, J., “Fatigue Crack Propagation Theories”, Fatigue and Microstructure, American Society for Metals, Metals Park, Ohio, U.S.A., pp. 279–306, 1979.

    Google Scholar 

  14. Sadananda, K., “Theoretical Aspects of Fatigue and Creep Crack Growth”, Advances in Fracture Research, Eds., S.R. Valluri et al, Pergamon Press, Oxford, England, Vol. 1, pp. 211–234, 1984.

    Google Scholar 

  15. Yokobori, T. and Ichikawa, M., “Effect of Elastic Plastic Stress Distribution near the Crack Tip on the Nucleation Theory of Fatigue Crack Propagation”, Rep. Res. Inst. Strength and Fracture of Materials, Tohoku Univ., Sendai, Japan, 4. pp. 45–53, 1968.

    Google Scholar 

  16. Fine, M.E. and Davidson, D.L., “Quantitative Measurement of Energy Associated with a Moving Fatigue Crack”, Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, ASTM STP 811, Eds. J. Lankford et al, American Society for Testing and Materials, Philadelphia, PA, U.S.A., pp. 350–370, 1983.

    Chapter  Google Scholar 

  17. Ritchie, R.O., Gerberich, W.W. and Antolovich, S.D., “Fundamentals of Fracture and Fatigue: A Basis for Alloy Design”, Mechanical Properties and Phase Transformations in Engineering Materials, Eds. S.D. Antolovich et al, TMS-AIME, Warrendale, PA, U.S.A., pp. 59–98, 1986.

    Google Scholar 

  18. Dowling, N.E. and Begley, J.A., “Fatigue Crack Growth During Gross Plasticity and the J-integral”, Mechanics of Crack Growth, ASTM STP 590, American Society for Testing and Materials, Philadelphia, PA, U.S.A., pp. 82–103, 1976.

    Google Scholar 

  19. Rice, J.R., “A Path Independent Integral and the Approximate Analysis of Strain Concentrations by Notches and Cracks”, J. of Appl. Mech., 35, pp. 379–386, 1968.

    Google Scholar 

  20. Paris, P.C., “Fracture Mechanics in the Elastic-Plastic Regime”, Flaw Growth and Fracture, ASTM STP 631, American Society for Testing and Materials, Philadelphia, PA, U.S.A., pp. 3–27, 1977.

    Google Scholar 

  21. Ritchie, R.O., “Thresholds for Fatigue Crack Propagation: Questions and Anomalies”, Advances in Fracture Research, Eds., S.R. Yalluri et al,, Pergamon Press, Oxford, England, Vol. 1, pp. 235–260, 1984.

    Google Scholar 

  22. Ritchie, R.O., “Near-Threshold Fatigue: An Overview of the Role of Microstructure and Environment”, Fatigue 84, Ed. C.J. Beevers, EMAS Ltd., Warley, U.K., Vol. 3, pp. 1833–1863, 1984.

    Google Scholar 

  23. Beevers, C.J., “Some Aspects of the Influence of Microstructure and Environment on AK Thresholds”, Fatigue Thresholds, Eds. J. Bäcklund, A.F. Blom and C.J. Beevers, EMAS Ltd., Warley, U.K., Vol. 1, pp. 257–275, 1982.

    Google Scholar 

  24. Yokobori, Jr., A.T. and Yokobori, T., “On Micro- and Macro-Mechanics of Fatigue Thresholds”, ibid., Vol. 1, pp. 171–189, 1982.

    Google Scholar 

  25. Sadananda, K. and Shahinian, P., “Predictions of Threshold Stress Intensity for Fatigue Crack Growth Using a Dislocation Model”, Int. J. Frac, 13, pp. 585–594, 1977.

    Article  Google Scholar 

  26. Yu, C. and Yan, M., “A Calculation of the Threshold Stress Intensity Factor Range for Fatigue Crack Propagation in Metals”, Fatigue Engng Mater. Struct., 2, pp. 189–192, 1980.

    Google Scholar 

  27. Weiss, V. and Lal, D.N., “A Note on the Threshold Condition for Fatigue Crack Propagation”, Met. Trans., 5, pp. 1946–1949, 1974.

    Article  Google Scholar 

  28. Blom, A.F., “Near-Threshold Fatigue Crack Growth and Crack Closure in 17–4 PH Steel and 2024-T3 Aluminium Alloy”, Fatigue Crack Growth Threshold Concepts, Eds. D.L. Davidson and S. Suresh, TMS-AIME, Warrendale, PA, U.S.A., pp. 263–279, 1984.

    Google Scholar 

  29. Yoder, G.R., Cooley, L.A. and Crooker, T.W., “A Critical Analysis of Grain-Size and Yield-Strength Dependence of Near-Threshold Fatigue Crack Growth in Steels”, Fracture Mechanics: 14th Symposium, ASTM STP 791, Eds. J.C. Lewis and G. Sines, American Society for Testing and Materials, Philadelphia, PA, U.S.A., Vol. 1, pp. 348–365, 1983.

    Google Scholar 

  30. Blom, A.F., Hadrboletz, A. and Weiss, B., “Effect of Crack Closure on Near-Threshold Crack Growth Behaviour in a High Strength Al-Alloy up to Ultrasonic Frequencies”, Mechanical Behaviour of Materials-IV, Eds. J. Carlsson and N.G. Ohlson, Pergamon Press, Oxford, U.K., Vol. 2, pp. 755–762, 1984.

    Google Scholar 

  31. Suresh, S., “Crack Deflection: Implications for the Growth of Long and Short Fatigue Cracks”, Met. Trans. A, pp. 2375–2385, 1983.

    Google Scholar 

  32. Suresh, S., “Models for Fatigue Crack Deflection”, Fatigue 84, Ed. C.J. Beevers, EMAS Ltd, Warley, U.K., Vol. 1, pp. 555–563, 1984.

    Google Scholar 

  33. Elber, W., “Fatigue Crack Propagation Under Random Loading: An Analysis Considering Crack Closure”, Proc. 11th ICAF Conference, Eds. G. Wållgren and S. Eggwertz, Stockholm, Sweden, 1969.

    Google Scholar 

  34. Elber, W., “Fatigue Crack Closure Under Cyclic Tension”, Eng. Frac. Mech., 2, pp. 37–45, 1970.

    Article  Google Scholar 

  35. Eiber, W., “The Significance of Fatigue Crack Closure”, Damage Tolerance in Aircraft Structures, ASTM STP 486, American Society for Testing and Materials, Philadelphia, PA, U.S.A., pp. 230–242, 1971.

    Google Scholar 

  36. Ritchie, R.O., “Environmental Effects on Near-Threshold Fatigue Crack Propagation in Steels: A Reassessment”, Fatigue Thresholds, Eds. J. Bäcklund, A.F. Blom and C.J. Beevers, EMAS, Warley, U.K., pp. 503–519, 1982.

    Google Scholar 

  37. Suresh, S., Parks, D.M. and Ritchie, R.O., “Crack Tip Oxide Formation and its Influence on Fatigue Thresholds”, atigue Thresholds, Eds. J. Bäcklund, A.F. Blom and C.J. Beevers, EMAS, Warley, U.K. ibid., pp. 391–408, 1982.

    Google Scholar 

  38. Stewart, A.T., “The Influence of Environment and Stress Ratio on Fatigue Crack Growth at Near-Threshold Stress Intensities in Low-Alloy Steels”, Engng Fracture Mech. 13, pp. 461–478, 1980.

    Article  Google Scholar 

  39. Suresh, S. and Ritchie, R.O., “Near-Threshold Fatigue Crack Propagation: A Perspective on the Role of Crack Closure”, Fatigue Crack Growth Threshold Concepts, Eds. D.L. Davidson and S. Suresh, TMS-AIME, Warrendale, PA, U.S.A., pp. 227–261, 1984.

    Google Scholar 

  40. Walker, N. and Beevers, C.J., “A Fatigue Crack Closure Mechanism in Titanium”, Fatigue Engng Mat. Struct. 1, pp. 135–148, 1979.

    Article  Google Scholar 

  41. Minakawa, K. and McEvily, A.J., “On Near-Threshold Fatigue Crack Growth in Steels and Aluminium Alloys”, Fatigue Thresholds, Eds. J. Bäcklund, A.F. Blom and C.J. Beevers, EMAS, Warley, U.K., pp. 373–390, 1982.

    Google Scholar 

  42. Ritchie, R.O. and Suresh, S., “Some Considerations on Fatigue Crack Closure at Near-Threshold Stress Intensities due to Fracture Surface Morphology”, Met. Trans. A, 13A, pp. 937–940, 1982.

    Article  Google Scholar 

  43. Suresh, S. and Ritchie, R.O., “A Geometric Model for Fatigue Crack Closure Induced by Fracture Surface Roughness”, Met. Trans. A, 13A. pp. 1627–1631, 1982.

    Article  Google Scholar 

  44. Ritchie, R.O., Zaiken, E. and Blom, A.F., “Is the Concept of a Fatigue Threshold Meaningful in the Presence of Compression Cycles?” Critical Experiments and Fundamental Questions on Fatigue, ASTM STP 924, Ed. J. Fong, American Society for Testing and Materials, Philadelphia, PA, U.S.A., in print.

    Google Scholar 

  45. Nakagaki, M. and Atluri, S.N., “Fatigue Crack Closure and Delay Effects Under Mode I Spectrum Loading: An Efficient Elastic-Plastic Analysis Procedure”, Fatigue Engng Mat. Struct. 1, pp. 421–429, 1979.

    Article  Google Scholar 

  46. Nakagaki, M. and Atluri, S.N., “Elastic-Plastic Analysis of Fatigue Crack Closure in Modes I and II”, AIAA J., 18, pp. 1110–1117, 1980.

    Article  Google Scholar 

  47. Hutchinson, J.W., “Singular Behaviour at the End of a Tensile Crack in a Hardening Material”, J. Mech. Phys. Solids, 16, pp. 13–31, 1968.

    Article  Google Scholar 

  48. Rice, J.R. and Rosengren, G.F., “Plane Strain Deformation Near a Crack Tip in a Power Hardening Material”, J. Mech. Phys. Solids, 16, pp. 1–12, 1968.

    Article  MATH  Google Scholar 

  49. Newman, Jr., J.C., “A Finite-Element Analysis of Fatigue Crack Closure”, Mechanics of Crack Growth, ASTM STP 590, American Society for Testing and Materials, PA, U.S.A., pp. 281–301, 1976.

    Google Scholar 

  50. Newman, Jr., J.C., “Finite-Element Analysis of Crack Growth Under Monotonic and Cyclic Loading”, Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth, ASTM STP 637, American Society for Testing and Materials, PA, U.S.A., pp. 56–80, 1977.

    Google Scholar 

  51. Blom, A.F. and Holm, D.K., “An Experimental and Numerical Study of Crack Closure”, Engng Frac. Mech., 22, pp. 997–1011, 1985.

    Article  Google Scholar 

  52. Blom, A.F. and Holm, D.K., “An Experimental and Numerical Study of Crack Closure”, Engng Frac. Mech., 22, pp. 997–1011, 1985.

    Article  Google Scholar 

  53. Holm, D.K. and Blom, A.F., “Load Interaction Effects on Fatigue Crack Propagation in High Strength Steels”, Report No. 85–11, Dept. Aero. Struct. Mtrls, The Royal Inst. Technology, Stockholm, Sweden, 1985.

    Google Scholar 

  54. Fleck, N.A., “Finite Element Analysis of Plasticity-Induced Crack Closure Under Plane Strain Conditions”, Engng Frac. Mech., 25, pp. 441–449, 1986.

    Article  Google Scholar 

  55. Chermahini, R.G., “Three-Dimensional Elastic-Plastic Finite-Element Analysis of Fatigue Crack Growth and Closure”, Ph. D, Thesis, Old Dominion University, Norfolk, VA., U.S.A., August 1986.

    Google Scholar 

  56. Chermahini, R.G., “Three-Dimensional Elastic-Plastic Finite-Element Analysis of Fatigue Crack Growth and Closure”, Ph. D, Thesis, Old Dominion University, Norfolk, VA., U.S.A., August 1986.

    Google Scholar 

  57. Chermahini, R.G. and Blom, A.F., “Determination of Fatigue Crack Closure: Three-Dimensional Analysis and Implications for Experimental Observations”, to be published.

    Google Scholar 

  58. Budiansky, B. and Hutchinson, J.W., “Analysis of Closure in Fatigue Crack Growth”, ASME J. Appl. Mech. 45, pp. 267–276, 1978.

    Article  MATH  Google Scholar 

  59. Füring, H. and Seeger, T., “Dugdale Crack Closure Analysis of Fatigue Cracks Under Constant Amplitude Loading”, Engng Fracture Mech. 11, pp. 99–122, 1979.

    Article  Google Scholar 

  60. Lo, K.K., “Fatigue Crack Closure Following a Step-Increase Load”, ASTM J. Appl. Mech. 47, pp. 811–815, 1980.

    Article  MATH  Google Scholar 

  61. Kanninen, M.F. and Popelar, C.H., “Advanced Fracture Mechanics”, Oxford University Press, New York, N.Y., U.S.A., 1985.

    MATH  Google Scholar 

  62. Paris, P.C. and Hermann, L., “Twenty Years of Reflection on Questions Involving Fatigue Crack Growth. Part II: Some Observations of Crack Closure”, Fatigue Thresholds Eds. J. Bäcklund, A.F. Blom and C.J. Beevers, EMAS Ltd., Warley, U.K., Vol. 1, pp. 11–32, 1982.

    Google Scholar 

  63. Kanninen, M.F., Atkinson, C. and Feddersen, C.E., “A Fatigue Crack-Growth Analysis Method Based on a Simple Representation of Crack-Tip Plasticity”, Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth”, ASTM STP 637, American Society for Testing and Materials, Philadelphia, PA, U.S.A., pp. 122–140, 1977.

    Google Scholar 

  64. Atkinson, C and Kanninen, M.F., “A Simple Representation of Crack Tip Plasticity: The Inclined Strip-Yield Superdislocation Model”, Int. J. Fracture, 13, pp. 151–163, 1977.

    Article  Google Scholar 

  65. Kanninen, M.F. and Atkinson, C, “Application of an Inclined-Strip-Yield Crack-Tip Plasticity Model to Predict Constant Amplitude Fatigue Crack Growth”, Int. J. Fracture, 16, pp. 53–69, 1980.

    Article  Google Scholar 

  66. Füring, H., “Fatigue Crack Growth Analysis for Random Loading Based on a Generalised Memory Criterion”, Numerical Methods in Fracture Mechanics II, Eds. D.R.J. Owen and A.R. Luxmoore, Pineridge Press, Swansea, U.K., pp. 645–658, 1980.

    Google Scholar 

  67. de Koning, A.U., “A Simple Crack Closure Model for Prediction of Fatigue Crack Growth Rates Under Variable-Amplitude Loading”, Fracture Mechanics: 13th Conf., ASTM STP 743, Ed. R. Roberts, American Society for Testing and Materials, Philadelphia, PA, U.S.A. pp. 63–85, 1981.

    Google Scholar 

  68. Newman, Jr., J.C., “A Crack-Closure Model for Predicting Fatigue Crack Growth Under Aircraft Spectrum Loading”, Methods and Models for Predicting Fatigue Crack Growth under Random Loading, ASTM STP 748, Eds. J.B. Chang and CM. Hudson, American Society for Testing and Materials, Philadelphia, PA, U.S.A., pp. 53–84, 1981.

    Chapter  Google Scholar 

  69. Wang, G.S. and Blom, A.F., “A Modified Dugdale-Barenblatt Model for Fatigue Crack Growth Predictions under General Load Conditions”, FFA TN 1987–79, The Aeronautical Research Institute of Sweden, Bromma, Sweden, 1987, Submitted for publication.

    Google Scholar 

  70. Bueckner, H.F., “A Novel Principle for the Computation of Stress Intensity Factors”, Zeitschrift für Angewandte Mathematik und Mechanik, 50, pp. 529–546, 1970.

    MathSciNet  MATH  Google Scholar 

  71. Hudak, S.J., Saxena, A., Bucci, R.J. and Malcolm, R.C., “Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Data”, AFML-TR-78–40, Air Force Materials Laboratory, Wright Patterson Air Force Base, OH, U.S.A., 1978.

    Google Scholar 

  72. Holm, D.K., Blom, A.F. and Suresh, S., “Growth of Cracks under Far-Field Cyclic Compressive Loads: Numerical and Experimental Results”, Engng Frac. Mech., 23, pp. 1097–1106, 1986.

    Article  Google Scholar 

  73. Blom, A.F., Holm D.K. and Suresh, S., “Fatigue Crack Growth under Cyclic Compression: Role of First Load Cycle”, To be presented at the 16th ICAS Congress, Jerusalem, Israel, August/Sept. 1988, Int. Council of the Aeronautical Sciences.

    Google Scholar 

  74. Aswath, P.B., Holm, D.K., Blom, A.F. and Suresh, S., “Load Interaction Effects on Compression Fatigue Crack Growth in Ductile Solids”, Accepted for publication in ASME J. Engng Mtrls. Techn.

    Google Scholar 

  75. Ignat’eva, V.S., Kulakhmet’ev, R.R. and Larionov, V.V., “Effects of Residual Stresses on the Development of Fatigue Cracks in the Region of Butt Welds”, Avt. Svarka, pp. 1–4, 1985.

    Google Scholar 

  76. Blom, A.F., “Influence of Residual Stress Fields on Fatigue Crack Propagation”, Residual Stresses, Eds. T. Ericsson and J. Bergström, Uddeholms AB, Hagfors, Sweden, pp. 195–230, 1987.

    Google Scholar 

  77. Wheeler, O.E., “Spectrum Loading and Crack Growth”, J. Basic Engng, Trans. ASME, 94, pp. 181–186, 1972.

    Google Scholar 

  78. Willenborg, J., Engle, R.M. and Wood. H., “A Crack Growth Retardation Model Using an Effective Stress Intensity Concept”, AFFDL-TM-FBR-71–1 Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base,, OH, U.S.A., 1971.

    Google Scholar 

  79. Ward-Close, C.M., Blom, A.F. and Ritchie, R.O., “Mechanisms Associated with Transient Fatigue Crack Growth under Variable-Amplitude Loading: An Experimental and Numerical Study”, Submitted for publication in Engng Frac. Mech.

    Google Scholar 

  80. Blom, A.F. and Holm, D.K., “Load Interaction Effects on Fatigue Crack Propagation in Steels of Varying Strength”, Role of Fracture Mechanics in Modern Technology, Eds. G.C Sih, H. Nisitani and T. Ishihara, North-Holland, Elsevier Science Publishers B.V., Amsterdam, The Netherlands, pp. 235–249, 1987.

    Google Scholar 

  81. Blom, A.F. and Sandberg, O., “Fatigue Crack Growth in the Steels SS 2132 and 0X812: Retardation Effects following Single Overloads” (in Swedish), FFA TN 1986–62, The Aeronautical Research Institute of Sweden, Bromma, Sweden, 1986.

    Google Scholar 

  82. Suresh, S. and Vasudevan, A.K., “Application of Fatigue Threshold Concepts to Variable Amplitude Crack Propagation”, Fatigue Crack Growth Threshold Concepts, Eds. D.L. Davidson and S. Suresh, TMS-AIME, Warrendale, PA, U.S.A., pp. 361–378, 1984.

    Google Scholar 

  83. Blom, A.F., “Relevance of Short Fatigue Crack Growth Data for Durability and Damage Tolerance Analyses of Aircraft”, Small Fatigue Cracks, Eds. R.O. Ritchie and J. Lankford, TMS-AIME, Warrendale, PA, U.S.A., pp. 623–638, 1986.

    Google Scholar 

  84. Heuler, P. and Schütz, W., “Fatigue Life Prediction in the Crack Initiation and Crack Propagation Stages”, Durability and Damage Tolerance in Aircraft Design, Eds. A. Salvetti and G. Cavallini, EMAS Ltd., Warley, U.K., pp. 33–69, 1985.

    Google Scholar 

  85. Small Fatigue Cracks, Eds. R.O. Ritchie and J. Lankford, TMS-AIME, Warrendale, PA, U.S.A., 1986.

    Google Scholar 

  86. The Behaviour of Short Fatigue Cracks, Eds. K.J. Miller and E.R. de los Rios, Mechanical Engineering Publications, London, U.K., 1986.

    Google Scholar 

  87. Blom, A.F., Hedlund, A., Zhao, W., Fathulla, A., Weiss, B. and Stickler, R., “Short Fatigue Crack Growth Behaviour in Al 2024 and Al 7475”, ibid., pp. 37–66, 1986.

    Google Scholar 

  88. Newman, Jr., J.C., “A Nonlinear Fracture Mechanics Approach to the Growth of Small Cracks”, Behaviour of Short Cracks in Airframe Components, AGARD Conf. Proc. No. 328, NATO Advisory Group for Aerospace Research and Development, Neuilly sur Seine, France, pp. 6–1–6–26, 1983.

    Google Scholar 

  89. Wang, G.S. and Blom, A.F., “On the Application of a Dugdale-Barenblatt Model to the Growth of Small Fatigue Cracks”, to be published.

    Google Scholar 

  90. Holm, D.K. and Blom, A.F., “Short Cracks and Crack Closure in Al 2024-T3”, 14th ICAS Congress, A.AA, New York, N.Y., U.S.A., pp. 783–790, 1984.

    Google Scholar 

  91. Ritchie, R.O., Yu, W., Blom, A.F. and Holm, D.K., “An Analysis of Crack Tip Shielding in Aluminum Alloy 2124: A Comparison of Large, Small, Through-Thickness and Surface Fatigue Cracks”, Fatigue and Fracture of Engng Mtrls Struct., in print.

    Google Scholar 

  92. Short-Crack Behaviour in Aerospace Materials — An AGARD Cooperative Test Programme, Coordinators J.C. Newman, Jr. and P. Edwards. AGARD Reports under preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Blom, A.F. (1989). Modelling of Fatigue Crack Growth. In: Branco, C.M., Rosa, L.G. (eds) Advances in Fatigue Science and Technology. NATO ASI Series, vol 159. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2277-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2277-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7521-3

  • Online ISBN: 978-94-009-2277-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics