Skip to main content

Implementation of Injection Technologies for the Renewal and Restoration of Serviceability of Concrete or Reinforced Concrete Structures

  • Chapter
  • First Online:
Injection Technologies for the Repair of Damaged Concrete Structures

Abstract

General description of injection technologies suitable for practical application in strength and serviceability restoration of concrete and reinforced concrete structures of long-term operation in the construction practice and municipal services is given. Technical requirements for injection technologies are determined. Key technical aspects of preparation of concrete and reinforced concrete structures damaged by cracks or other dangerous defects for implementation of injection technologies are considered. The chapter contains a description of disadvantages of feeding aqueous cement or cement/polymer suspensions into cracks or damaged zones of concrete structures and buildings.The authors substantiate a technical feasibility of implementation of technological processes for repair and restoration of degraded building structures using fluent dual-component injection polymer materials.

General principles of implementation of technological processes based on reactive polymer composition injection into cracks or defects in concrete and reinforced concrete take place in the chapter. The technologies based on the most effective polyurethane injection material application get detailed description here. The list and specifications of injection technologies suitable for practical application in strength and serviceability restoration of concrete and reinforced concrete structures are given. Processes of injection and/or waterproofing repair of inner surfaces in sewage collectors or pipelines get detailed consideration in this chapter. Technical parameters and operational principle of the mobile diagnostic-restoration complex mounted in the truck van are characterized as well as constituting particular diagnostic or processing devices, appliances and instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fluent polymer compositions are mixtures of initial monomers, low-molecular oligomers, and high-molecular polymers.

  2. 2.

    The State Production & Research Center “Techno-Resource” of the National Academy of Sciences of Ukraine had developed the necessary domestic polymer compositions, performed in-lab tests and field trials, and implemented the technology into practice.

References

  1. Panasyuk VV, Sylovanyuk VP, Marukha VІ (2005) Strength of structure elements damaged by cracks and healed using injection technologies. Phys Chem Mech Mater 6:60–64

    Google Scholar 

  2. Marukha VI, Serednitskiy YA, Gnip I P, Sylovanyuk VP (2007) Development of injection technologies and design of mobile equipment for diagnostics and serviceability restoration of concrete or reinforced concrete structures operating under stress-corrosive conditions. Sci Innov 3:55–62

    Google Scholar 

  3. Sylovanyuk VP, Marukha VI, Genega BY, Ivantiskhin NA (2002) Fracture mechanics as the base of densification injection technology in rehabilitation of long-term objects. In: Mekhanika i fizika ruynuvannya budivel’nikh materialiv i konstrukciy (Mechanics and physics of fracture for building materials and structures), No. 5. Kamenyar, L’viv, p 373–382

    Google Scholar 

  4. Czarniecki L, Emmons PH (2002) Naprava i ochrona konstrukcji betonowych (Repair and protection of concrete structures). Polski Cement, Kraków

    Google Scholar 

  5. Allen RNL, Edwards SC, Shaw DN (eds) (1993) Repair of concrete structures. Blackie Academic and Profectional, Glazgow

    Google Scholar 

  6. Wysokowski A, Żurawska A (1998) Wprowadzenie w tematyke nowoczesnego wzmacniania mostów betonowyckh (Advances in concrete bridge strengthening). In: Nowoczesny metody wzmacniania mostów betonowych (Modern methods of concrete bridge strengthening). Instytut Badawczy Dróg i Mostów, Warsaw, p 126–129

    Google Scholar 

  7. Marukha A, Genega B, Serednitskiy Y, Zaplatins’kiy M (2006) Concrete structure protection against stress corrosion using polyurethane injection compositions. Phys Chem Mech Mater 5:834–840

    Google Scholar 

  8. Marukha VI, Genega BY (2001) Ushchil’nyuval’ni tekhnologії dlya zmicnennya i remontu zalizobetonnikh konstrukciy (Consolidation technologies for strengthening and repairing reinforced concrete structure). In: Diagnostika, dovgovichnist’ i rekonstruktsiya mostiv i budivel’nikh konstrukciy (Diagnostics, durability, and rehabilitation of bridges and building structures). No. 4. Kamenyar, L’viv, p 158–161

    Google Scholar 

  9. Marukha VI, Genega BY, Serednitskiy YA (2006) Efektivnist’ zastosuvannya poliure-tanovikh in’єktsіynikh materialiv u vidnovlenni pratsezdatnosti betonnikh i zalizo-betonnikh konstruktsiy i sporud z koroziyno-mekhanichnimi trishchinami (Polyurethane injection materials efficiency in serviceability renewal of concrete and reinforced concrete structures with stress-corrosion cracks). In: Diagnostika, dovgovichnist’ i rekonstruktsiya mostiv i budivel’nikh konstrukciy (Diagnostics, durability, and rehabilitation of bridges and building structures). No. 8. Kamenyar, L’viv, p 84–90

    Google Scholar 

  10. Marukha VI, Vasilechko VO, Genega BY et al (2003) Waterproofing cover selection rules for protection of a sewage collector against very aggressive media volleys. In: Proc. int. water forum “Aqua Ukraine 2003”, Ukrainian Water Association, Kyiv, Nov 4–6, 2003, p 194–195

    Google Scholar 

  11. Broniewski T, Ciesielski R, Fiertak M (1999) Technical condition evaluation and service life prediction for industrial reinforced concrete pipelines. Corros Prot 1:7–12

    Google Scholar 

  12. Velesovski RA, Kestelman VN (2004) Adhesion of Polymers. McGrawHill, Peking

    Google Scholar 

  13. Fakirov S (ed) (2005) Handbook of condensation thermoplastic elastomers. Wiley-VCH, Weinheim

    Book  Google Scholar 

  14. Gotz VI (2003) Betony i budivel’ni rozchiny (Concretes and building mortars) KNUBA, Kyiv

    Google Scholar 

  15. Ivanov FM, Yakub TY, Chayka NA (1972) Vliyaniye struktury betona na yego korrozionnuyu stoykost’ (Concrete microstructure effect on its corrosion resistance). In: Korroziya i zashchita stroitel’nykh konstruktsiy na predpriyatiyakh metallurgii (Corrosion and protection of building structures in metallurgical plants). Stroyizdat, Moscow, p 87–92

    Google Scholar 

  16. Verbetskiy VG (1976) Prochnost’ i dolgovechnost’ betona v vodnoy srede (Concrete strength and durability in water environment). Stroyizdat, Moscow

    Google Scholar 

  17. Kozak SI, Nikipanchuk MV, Kotur MG, Grigorash VV (2001) Khimichni osnovi korozії— konstruktsiynikh materialiv (Chemical foundation of structural materials corrosion). Liga-Press, L’viv

    Google Scholar 

  18. Moskvin VM, Ivanov FM, Alexeev SN, Guzeyev EA (1980) Korroziya betona i zkhelezobetona, metody ikh zaskhckhity (Concrete and reinforced concrete corrosion and protective methods). Stroyizdat, Moscow

    Google Scholar 

  19. Fiertak M, Kanka S (1996) Typical cases of sulfate concrete corrosion. In: Mater Conf “KONTRA-96”, Warszawa-Zakopane, p 43–45

    Google Scholar 

  20. Ivanov FM (1975) Issledovanie cementnykh rastvorov, podvergavshikhsya 68 let deystviyu morskoy vody (Study of cement stones subjected to 68-years-long action of sea water). In: Povysheniye stoykosti betona i zhelezobetona pri vozdeystvii agressivnykh sred (Raising concrete and reinforced concrete resistance to aggressive media). NIIZkhB, Moscow, p 27–30

    Google Scholar 

  21. Bulgakova MG (1975) Vliyanie adsorbtsionnoaktivnykh sred na prochnost’ i de-formacii betona pri szhatii (Effect of adsorption active media on compressive strength and deformations of concrete). In: Povysheniye stoykosti betona i zhelezobetona pri vozdeystvii agressivnykh sred (Raising concrete and reinforced concrete resistance to aggressive media). NIIZkhB, Moscow, p 38–41

    Google Scholar 

  22. Drobyshevskiy BD (1976) The effect of climate factors on deformations and cracking of span structures. Transport Construct 9:14–18

    Google Scholar 

  23. Scislewski Z (1999) Ochrona konstrukcji żelbetonowych (Protection of reinforced concrete structures). Arkady, Warsaw

    Google Scholar 

  24. Vasil’ev O, Erofeev V, Kartashov V et al. (2004) Protivodeystviye biopovrezhdeniyam na etapakh stroitel’stva, ekspluatatsii i remonta zhilykh i proizvodstvennykh pomeshcheniy (Counteraction against bio damages in stages of construction, exploitation, and repair of residential and industrial rooms). Soft Protector, S.-Peterburg

    Google Scholar 

  25. Andreyuk KI, Kozlova IO, Koptєva ZP et al (2005) Mikrobna koroziya pidzemnikh sporud (Microbe corrosion of underground structures). Nauk. Dumka, Kyiv

    Google Scholar 

  26. Kopteva ZP, Zanina VV, Purish LM et al (2004) Microflora of impaired reinforced concrete structures in conditions of inhibitor protection. Microbiol J 5:68–75

    Google Scholar 

  27. Subbota A, Zakharchenko V, Markevich O et al (2006) Micro fungi impairing structures of buildings. Phys Chem Mech Mater 5:932–936

    Google Scholar 

  28. Karyś Y, Kmita A (1999) A case of sulfate and chloride corrosion in coupled concrete pipes. Corros Prot 1:12–14

    Google Scholar 

  29. Serednitskiy YA (1994) Zakhist metalokonstruktsiy v gruntakh pidvishchenoy koroziynoy aktivnosti (Metal structure protection in soils with high corrosive activity). In: Ukrains’ke materialoznavstvo (Material science in Ukraine). Phys Mech Inst N.A.S.U., L’viv, p 113–118

    Google Scholar 

  30. Serednitskiy Y, Banakhevich Y, Dragіlєv A (2005) Suchasna protikoroziyna izolyaciya v truboprovidnomu transporti (Modern anticorrosion insulation in pipeline transport). Splain, L’viv

    Google Scholar 

  31. Ivanov FM, Vlasov SN (1962) Corrosion protection of reinforced concrete blocks of tunnels. Transport Construct 14:31–34

    Google Scholar 

  32. Slobodyan Z, Zvirko O, Kupovich R (2003) Simulation studies of corrosion processes in electrolyte thin interlayer between oil and water. Phys Chem Mech Mater 5:123–124

    Google Scholar 

  33. Serednitskiy YA, Teodorovich DA, Kryzhevich LA (1978) Mikro- i biologicheskaya stoykost’ poliuretanovykh zashchitnykh pokrytiy (Micro and bio resistance of polyurethane protective coverings). In: Biopovrezhdeniya stroitel’nykh i promyshlennykh materialov (Bio damages of construction and industrial materials). Nauk. Dumka, Kyiv, p 85–86

    Google Scholar 

  34. Chandles HT (1979) Corrosion-biofouling relationship of metal in water. Metal Program 115:47–53

    Google Scholar 

  35. Serednitskiy YA (2001) Scientific and practical aspects of steel corrosion in presence of sulfate reducing bacteria. Practice Anticor Protect 1:20–30

    Google Scholar 

  36. Heinz E, Flemming HC, Sand W (1996) Microbial influenced corrosion of materials: Scientific and engineering aspects. Springer-Verlag, Berlin

    Google Scholar 

  37. USSR Standard GOST 10180-90 (1990) Concretes: methods for strength determination using control specimens

    Google Scholar 

  38. USSR Standard GOST 28167-91 (1991) Concretes: methods for determining fracture toughness under static loading

    Google Scholar 

  39. Rubetskaya TV, Bubnova LS (1971) Methods for concrete damaging depth calculation under corrosive conditions. Concrete Reinforced Concrete 10:18–22

    Google Scholar 

  40. Karyś Y, Zubrycki M (1987) Permissible content of cracks in reinforced concrete structures as a function of the amount of reinforcement and corrosion resistance. In: Mater Conf “KONTRA-87”, Warsaw, p 87–88

    Google Scholar 

  41. Marukha V, Genega BY, Serednitskiy YA (2007) Technology of serviceability restoration using polyurethane injection compositions for concrete and reinforced concrete structures with stress-corrosion cracks. In: Scientific, resource, and technological potential realization efficiency in modern conditions. Proc. 7th Int. Ind. Conf., Lviv, Febr. 2007, p 144–147

    Google Scholar 

  42. ACI-89 M12 503-5R (1992) Guide for the selection of polymer adhesives for concrete. ACI Mater J 1–2:90–105

    Google Scholar 

  43. Czarniecki L, Skwara Y (1998) Healing cracks in reinforced concrete structures by injection. In: Project execution workshop. XIII All-Poland Conf., Ustroń, p 39–55

    Google Scholar 

  44. Golushkova L, Galan’ I, Neprila M, Gulay O (2006) Effects of polyester and isocyanate components on viscosity of polyurethane compositions during polymerization. Bull Ternopol Univ 11:31–37

    Google Scholar 

  45. Kadurina TI, Omel’chenko SI (1980) Hydrolytic stability and protective properties of ester polyurethanes. Paint Lacquer Mater 3:4–6

    Google Scholar 

  46. O’Chaugnessy A, Hoeschale GK (1971) Hydrolytic stability of a new urethane elastomers. Rubber Chem Technol 44:52–61

    Article  Google Scholar 

  47. Serednitskiy Y, Banakhevich Y, Dragіlєv A (2004) Suchasna protikoroziyna izolyaciya v truboprovidnomu transporti (Modern anticorrosion insulation in pipeline transport). 2nd Part. Splain, L’viv

    Google Scholar 

  48. Serednitskiy YA (2001) The effect of polyester block structure and isocyanate components on properties of molded polyurethane elastomers. Composite Polymer Mater 2:45–50

    Google Scholar 

  49. Serednitskiy Y (2000) Polyurethane materials for covering main pipelines. Phys Chem Mech Mater 3:84–89

    Google Scholar 

  50. Derkach MP, Banakhevich YV, Itkin OF (2003) Experience of gas main pipeline overhaul without stopping gas transport. Oil Gas Ind 4:51–53

    Google Scholar 

  51. Czarnecki L, Wysokowski A (2000) Materials for the repair and strengthening of concrete bridge structures. Build Mater 5:40–47

    Google Scholar 

  52. Czarnecki L, Jambrozy Z (1996) Material and technology solutions in the repair and protection of concrete structures. Build Mater 8:2–6

    Google Scholar 

  53. Czarnecki L (1987) Scientific and technical base of resin injection for objects repair. In: Corrosion protection of modernized buildings and houses. IV Conf. PZITB and Warsaw Center for Progress in Construction, Warszawa–Zakopane

    Google Scholar 

  54. Czarnecki L, Scislewski Z (1998) Durability requirements for repaired reinforced concrete structures. Constr Overv 11:4–8

    Google Scholar 

  55. Czarnecki L (1998) Materials for the repair and protection of concrete structures. Build Mater 11:8–14

    Google Scholar 

  56. Berlin AA, Shutov FA (1978) Penopolimery na osnove reaktsionno-sposobnykh oligomerov (Polymer foams based on reactive oligomers). Stroyizdat, Moscow

    Google Scholar 

  57. Bulatov AG (1978) Penopoliuretany v promyshlennosti i stroitel’stve (Polyurethane foams in industry and construction). Stroyizdat, Moscow

    Google Scholar 

  58. Dement’ev AG, Tarakanov OG (1983) Struktura i svoystva penoplastov (Structure and properties of foam plastics). Stroyizdat, Moscow

    Google Scholar 

  59. Broomfield YP (1996) Corrosion of steel in concrete: Understanding, investigation and repair. Chapman and Hall, London

    Book  Google Scholar 

  60. Page CL, Bamforthe PB, Fig JW (1996) Corrosion and reinforcement in concrete construction. Royal Society of Chemistry, Cambridge

    Google Scholar 

  61. Marukha VI, Serednitskiy YA, Gnip IP (2008) Characteristics of initial injection composites and solid polyurethanes for renewal of reinforced concrete structures with cracks. Build Mater 71:275–281

    Google Scholar 

  62. Maruckha VI, Serednitsky Y (2008) Modeling of destruction processes under extreme loading of systems concrete-polyurethane-concrete. In: Persistence and effectiveness of the repair works. Mater. II Conf., Poznań (Poland), Nov. 2008, p 413–419

    Google Scholar 

  63. Marukha VI, Serednitskiy YA, Piddubniy VK, Voloskhin MP (2009) Advanced polyurethane and polyepoxy injection materials for restoration of concrete and reinforced concrete structures. Build Struct 72:465–470

    Google Scholar 

  64. Marukha VI, Serednitrskiy YA, Pichugin AT et al (2009) Development and manufacture of pilot equipment, creation of operating shop for production polyol components of polyurethane injection materials. Sci Innov 5:17–24

    Google Scholar 

  65. Marukha VI, Gnyp IP (2009) Injection strengthening as a resource-saving technology for repairing concrete structures with cracks. In: Energy and materials saving, environmentally safe technologies. Abstracts of VIII Int Sci. & Tech Conf, Belarus’, Grodno, p 81–82

    Google Scholar 

  66. Marukha VI, Serednitskiy YA, Voloshin MP (2009) Characteristics of epoxy, epoxy/silicon-organic, and urethane injection compositions and polymers. In: Energy and materials saving, environmentally safe technologies. Abstracts of VIII Int Sci & Tech. Conf., Belarus’, Grodno, p 79–80

    Google Scholar 

  67. Marukha VI, Serednitsky Y, Voloshin M (2009) Injectable compositions of liquid and polymer inserts to fill cracks and scratches at the renewal of iron-concrete constructions. Plast Chem 6:20–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.V. Panasyuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Panasyuk, V., Marukha, V., Sylovanyuk, V. (2014). Implementation of Injection Technologies for the Renewal and Restoration of Serviceability of Concrete or Reinforced Concrete Structures. In: Injection Technologies for the Repair of Damaged Concrete Structures. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7908-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7908-2_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7907-5

  • Online ISBN: 978-94-007-7908-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics