Skip to main content

Fluxes of Carbon, Water and Nutrients

  • Chapter
  • First Online:
Physical and Physiological Forest Ecology

Abstract

The metabolic and physical processes result in concentration, pressure and temperature differences that generate fluxes within ecosystems and between ecosystems and their surroundings. We apply the same approach combining metabolic and physical processes with transport in the analysis of very different phenomena from water and sugar transport within trees to the fluxes of carbon and nutrients in the forest ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A lysimeter is a measuring device which can be used to measure the amount of actual evapotranspiration which is released by plants, usually crops or trees. By recording the amount of precipitation that an area receives and the amount lost through the soil, the amount of water lost to evapotranspiration can be calculated.

  2. 2.

    A thermal radiator capable of providing a spectrum dependent on the temperature alone according to Planck’s law is called a full radiator. The law states that the energy emission of the black body is proportional to the fourth power of its absolute temperature.

References

  • Achat DL, Augusto L, Morel C, Bakker MR (2011) Predicting available phosphate ions from physical-chemical soil properties in acidic sandy soils under pine forests. J Soil Sediment 11:452–466

    Article  CAS  Google Scholar 

  • Ågren GI (1996) Nitrogen productivity or photosynthesis minus respiration to calculate plant growth. Oikos 76:529–535

    Article  Google Scholar 

  • Amthor JS, Chen JM, Clein JS, Frolking SE, Goulden ML, Grant RF, Kimball JS, King AW, McGuire AD, Nikolov NT, Potter CS, Wang S, Wofsy SC (2001) Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: intermodel comparisons and relationships to field measurements. J Geophys Res 106:33623–33648

    Article  CAS  Google Scholar 

  • Anfodillo T, Carraro V, Carrer M, Fior C, Rossi S (2006) Convergent tapering of xylem conduits in different woody species. New Phytol 169:279–290

    Article  Google Scholar 

  • Baldocchi DD, Vogel CA (1996) Energy and CO2 flux densities above and below a temperate broad-leaved forest and a boreal pine forest. Tree Physiol 16:5–16

    Article  Google Scholar 

  • Baldocchi DD, Vogel CA, Hall B (1997) Seasonal variation of energy and water vapor exchange rates above and below a boreal Jack pine forest canopy. J Geophys Res 102(D4):28939–28951

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Heidelberg/Berlin

    Google Scholar 

  • Bergh J, Ross E, Linder S (1998) Climatic factors controlling the productivity of Norway spruce: a-model-based analysis. For Ecol Manag 110:127–139

    Article  Google Scholar 

  • Berninger F, Coll L, Vanninen P, Mäkelä A, Palmroth S, Nikinmaa E (2005) Effects of tree size and position on pipe model ratios in Scots pine. Can J For Res 35:1294–1305

    Article  Google Scholar 

  • Blume H-P, Brümmer GW, Horn R, Kandeler E, Kögel-Knabner I, Kretzshmar R, Stahr K, Wilke B-M (2010) Scheffer/Schachtschabel Lehrbuch der Bodenkunde, 16th edn. Spektrum, Heidelberg

    Google Scholar 

  • Bohn HL, McNeal BL, Myer RA, O’Connor GA (2001) Soil chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  Google Scholar 

  • Bond B, Kavanagh K (1997) Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiol 19:503–510

    Article  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572

    Article  CAS  Google Scholar 

  • Borggaard OK, Raben-Lange B, Gimsing AL, Strobel BW (2005) Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma 127:270–279

    Article  CAS  Google Scholar 

  • Brough DW, Jones HG, Grace J (1986) Diurnal changes in the water-content of stems of apple trees as influenced by irrigation. Plant Cell Environ 9:1–7

    Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Berch SM, Preston CM, Lavkulich LM (2000) Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. I. A comparison of two forest types. Can J For Res 30:1714–1725

    Article  CAS  Google Scholar 

  • Caraglio Y, Barthélémy D (1997) Revue critique des termes relatifs à la croissance et à la ramification des tiges des végétaux vasculaires. In: Bouchon J, de Reffye P, Barthélémy D (eds) Modélisation et simulation de l’architecture des végétaux. INRA Éditions, Versailles

    Google Scholar 

  • Čermák J, Nadezhdina N (1998) Sapwood as the scaling parameter–defining according to xylem water content or radial pattern of sap flow? Ann For Sci 55:509–521

    Article  Google Scholar 

  • Čermák J, Kucera J, Bauerle WL, Phillips N, Hinckley TM (2007) Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiol 27:181–198

    Article  Google Scholar 

  • Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM (2004) Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. J Exp Bot 55:1569–1575

    Article  CAS  Google Scholar 

  • Cochard H, Hölttä T, Herbette S, Delzon S, Mencuccini M (2009) New insights into the mechanisms of water-stress induced cavitation in conifers. Plant Physiol 151:949–954

    Article  CAS  Google Scholar 

  • Compton JE, Cole DW (1998) Phosphorus cycling and soil P fractions in Douglas-fir and red alder stands. For Ecol Manag 110:101–112

    Article  Google Scholar 

  • Constantin J, Grelle A, Ibrom A, Morgenstern K (1999) Flux partitioning between understorey and overstorey in a boreal spruce/pine forest determined by the Eddy Covariance method. Agr For Meteorol 98(99):629–643

    Article  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol 4:217–227

    Article  Google Scholar 

  • Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95:565–574

    Google Scholar 

  • Debenedetti P (1996) Metastable liquids. Princeton University Press, Princeton

    Google Scholar 

  • Desutter TM, Sauer TJ, Parkin TB, Heitman, JL (2008) A subsurface, closed-loop system for soil carbon dioxide and its application to the gradient efflux approach. Soil Sci Soc Am J 72:126–134

    Article  CAS  Google Scholar 

  • Dickson RE, Isebrands JG (1991) Leaves as regulators of stress responses. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic, San Diego

    Google Scholar 

  • Domec J-C, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc Natl Acad Sci USA 105:12069–12074

    Article  CAS  Google Scholar 

  • Doran JW, Mielke LN, Stamatiadis S (1988) Microbial activity and N cycling as regulated by soil water-filled pore space. In: Proceedings of 11th ISTRO conference, Edinburgh

    Google Scholar 

  • Drake JE, Gallet-Budynek A, Hofmockel KS et al (2011) Increases in the flux of carbon below ground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol Lett 14:349–357

    Article  Google Scholar 

  • Drebs A, Nordlund A, Karlsson P, Helminen J, Rissanen P (2002) Climatological statistics of Finland 1971–2000, climatological statistics of Finland 2001. Finnish Meteorol Institute, Helsinki

    Google Scholar 

  • Duursma R, Mäkelä A (2007) Summary models for light interception and light-use efficiency of non-homogeneous canopies. Tree Physiol 27:859–870

    Article  CAS  Google Scholar 

  • Duursma RA, Marshall JD, Robinson AP, Pangle RE (2007) Description and test of a simple process-based model of forest growth for mixed-species stands. Ecol Model 203:297–311

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson RJ et al (34 authors) (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agr For Meteorol 107:43–69

    Google Scholar 

  • Fang C, Moncrieff JP (1999) A model for soil CO2 production and transport 1: model development. Agr For Meteorol 95:225–236

    Article  Google Scholar 

  • Fernandez IJ, Kosian PA (1987) Soil air carbon dioxide concentrations in a New England spruce-fir forest. Soil Sci Soc Am J 51:261–263

    Article  CAS  Google Scholar 

  • Flechard CR, Nemitz E, Smith RI, Fowler D, Vermeulen AT, Bleeker A, Erisman JW, Simpson D, Zhang L, Tang YS, Sutton MA (2011) Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. Atmos Chem Phys 11:2703–2728

    Article  CAS  Google Scholar 

  • Fontaine S, Barot S, Barré P et al (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  CAS  Google Scholar 

  • Freijer JI, Leffelaar PA (1996) Adapted Fick’s law applied to soil respiration. Water Resour Res 32:791–800

    Article  CAS  Google Scholar 

  • Génard M, Fishman S, Vercambre G, Huguet J-G, Bussi C, Besset J, Habib R (2001) A biophysical analysis of stem and root diameter variations in woody plants. Plant Physiol 126:188–202

    Article  Google Scholar 

  • Glinski JW, Stepniewski W (1985) Soil aeration and its role for plants. CRC Press, Boca Raton

    Google Scholar 

  • Goulet J, Messier C, Nikinmaa E (2000) Effect of branch position and light availability on shoot growth of understory sugar maple and yellow birch sapling. Can J Bot 78:1077–1085

    Google Scholar 

  • Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–320

    Article  Google Scholar 

  • Greaves JR, Carter EG (1920) Influence of moisture on the bacterial activities of the soil. Soil Sci 10:361–387

    Article  CAS  Google Scholar 

  • Guppy CN, Menzies NW, Moody PW, Blamey FPC (2005) Competitive sorption reactions between phosphorus and organic matter in soil: a review. Aust J Soil Res 43:189–202

    Article  CAS  Google Scholar 

  • Gustafsson JP, van Hees P, Starr M, Karltun E, Lundström U (2000) Partitioning of base cations and sulphate between solid and dissolved phases in three podzolised forest soils. Geoderma 94:311–333

    Article  CAS  Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J (2004) Analysis of circular bordered pit function. II. Gymnosperm tracheids with torus-margo pit membranes. Am J Bot 91:386–400

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WP, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer, Berlin

    Book  Google Scholar 

  • Hari P, Heikinheimo P, Mäkelä A, Kaipiainen L, Korpilahti E, Salmela J (1986) Trees as a water transport system. Silva Fenn 20:205–210

    Google Scholar 

  • Hari P, Keronen P, Bäck J, Altimir N, Linkosalo T, Pohja T, Kulmala M, Vesala T (1999) An improvement of the method for calibrating measurements of photosynthetic CO2 flux. Plant Cell Environ 22:1297–1301

    Article  Google Scholar 

  • Heinonsalo J, Pumpanen J, Rasilo T, Hurme K-R, Ilvesniemi H (2010) Carbon partitioning in ectomycorrhizal Scots pine seedlings. Soil Biol Biochem 42:1614–1623

    Article  CAS  Google Scholar 

  • Hillel D (1982) Introduction to soil physics. Academic Press, New York

    Google Scholar 

  • Hingston FJ, Atkinson RJ, Posner AM, Quirk JP (1967) Specific adsorption of anions. Nature 215:1459–1461

    Article  CAS  Google Scholar 

  • Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554

    Article  Google Scholar 

  • Holbrook NM, Zwieniecki MA (1999) Embolism repair and xylem tension: do we need a miracle? Plant Physiol 120:7–10

    Article  CAS  Google Scholar 

  • Höltta T, Kolari P (2009) Interpretation of stem CO2 efflux measurements. Tree Physiol 29:1447–1456

    Article  CAS  Google Scholar 

  • Hölttä T, Vesala T, Perämäki MK, Nikinmaa E (2002) Relationships between embolism, stem water tension, and diameter changes. J Theor Biol 215:23–38

    Article  Google Scholar 

  • Hölttä T, Vesala T, Perämäki M, Nikinmaa E (2006a) Refilling of embolised conduits as a consequence of “Munch water” circulation. Funct Plant Biol 33:949–959

    Article  Google Scholar 

  • Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E (2006b) Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees Struct Funct 20:67–78

    Article  Google Scholar 

  • Hölttä T, Cochard H, Nikinmaa E, Mencuccini M (2009) Capacitive effect of cavitation in xylem conduits. Plant Cell Environ 32:10–21

    Article  Google Scholar 

  • Horn HS (2000) Twigs, trees, and the dynamics of carbon in the landscape. In: Brown JH, West GB (eds) Scaling in biology. Oxford University Press, New York

    Google Scholar 

  • Huber B (1935) Die physiologische Bedeutung der Ring- und Zerstreutporigkeit. Ber Deut Bot Ges 53:711–719

    Google Scholar 

  • Irvine J, Grace J (1997) Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta 202:455–461

    Article  CAS  Google Scholar 

  • Jassal R, Black A, Novak M, Morgenstern K, Nesic Z, Gaumont-Guay D (2005) Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agr For Meteorol 130:176–192

    Article  Google Scholar 

  • Johansson MB, Berg B, Meentemeyer V (1995) Litter mass loss rates in the late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest. Can J Bot 73:1509–1521

    Article  Google Scholar 

  • Kähkönen MA, Wittmann C, Kurola J, Ilvesniemi H, Salkinoja-Salonen MS (2001) Microbial activity of boreal forest soil in a cold climate. Bor Environ Res 6:19–28

    Google Scholar 

  • Kaipiainen L, Hari P (1985) Consistencies in the structure of Scots pine. In: Tigerstedt PMA, Puttonen P, Koski V (eds) Crop physiology of forest trees. Helsinki University Press, Helsinki

    Google Scholar 

  • Kaiser K, Kaupenjohann M (1998) Influence of the soil solution composition on retention and release of sulfate in acid forest soils. Water Air Soil Poll 101:363–376

    Article  CAS  Google Scholar 

  • Kärkkäinen M (2007) Puun rakenne ja ominaisuudet. Metsäkustannus Oy, Helsinki (in Finnish)

    Google Scholar 

  • Kelliher FM, Lloyd J, Arneth A, Byers JN, McSeveny TM, Milukova I, Grigoriev S, Panfyorov M, Sogatchev A, Varlargin A, Ziegler W, Bauer G, Schulze ED (1998) Evaporation from a central Siberian pine forest. J Hydrol 205:279–296

    Article  Google Scholar 

  • Kennedy RE, Turner DP, Cohen WB, Guzy M (2006) A method to efficiently apply a biogeochemical model to a landscape. Landsc Ecol 21:213–224

    Article  Google Scholar 

  • Klepper B, Browning VD, Taylor HM (1971) Stem diameter in relation to plant water status. Plant Physiol 48:683–685

    Article  CAS  Google Scholar 

  • Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10:35–50

    CAS  Google Scholar 

  • Koch GW, Sillet SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854

    Article  CAS  Google Scholar 

  • Koehler B, Zehe E, Corre MD, Veldkamp E (2010) An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils. Biogeosciences 7:2311–2325

    Google Scholar 

  • Kolari P, Pumpanen J, Kulmala L, Ilvesniemi H, Nikinmaa E, Grönholm T, Hari P (2006) Forest floor vegetation plays an important role in photosynthetic production of boreal forests. For Ecol Manag 221:241–248

    Article  Google Scholar 

  • Kolari P, Lappalainen HK, Hänninen H, Hari P (2007) Relationship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone. Tellus 59B:542–552

    CAS  Google Scholar 

  • Kolari P, Kulmala L, Pumpanen J, Launiainen S, Ilvesniemi H, Hari P, Nikinmaa E (2009) CO2 exchange and component CO2 fluxes of a boreal Scots pine forest. Bor Environ Res 14:761–778

    CAS  Google Scholar 

  • Kottek M, Grieser J, Beck C, Bruno R, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Kramer K, Leinonen I, Bartelink HH et al (28 authors) (2002) Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Glob Change Biol 8:213–230

    Google Scholar 

  • Kulmala L, Launiainen S, Pumpanen J, Lankreijer H, Lindroth A, Hari P, Vesala T (2008) H2O and CO2 fluxes at the floor of a boreal pine forest. Tellus 60B:167–178

    CAS  Google Scholar 

  • Kulmala L, Pumpanen J, Hari P, Vesala T (2011) Photosynthesis of ground vegetation in different aged pine forests: effect of environmental factors predicted with a process-based model. J Veg Sci 22:96–110

    Article  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Land M, Öhlander B (2000) Chemical weathering rates, erosion rates and mobility of major and trace elements in a boreal granitic till. Aquat Geochem 6:436–460

    Article  Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95:209–228

    Article  Google Scholar 

  • Lang A (1979) A relay mechanism for phloem translocation. Ann Bot 44:141–145

    Google Scholar 

  • Lang A (1983) Turgor-regulated translocation. Plant Cell Environ 6:683–689

    Google Scholar 

  • Launiainen S (2010) Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest. Biogeosciences 7:3915–3940

    Article  Google Scholar 

  • Launiainen S, Rinne J, Pumpanen J, Kulmala L, Kolari P, Keronen P et al (2005) Eddy covariance measurements of CO2 and sensible and latent heat fluxes during a full year in a boreal pine forest trunk-space. Bor Environ Res 10:569–588

    CAS  Google Scholar 

  • Launiainen S, Katul GG, Kolari P, Vesala T, Hari P (2011) Empirical and optimal stomatal controls on leaf and ecosystem level CO2 and H2O exchange rates. Agr For Meteorol 151:1672–1689

    Article  Google Scholar 

  • Law BE, Waring RH, Anthoni PM, Aber JD (2000) Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Glob Change Biol 6:155–168

    Article  Google Scholar 

  • Liesche J, He H-X, Grimm B, Schulz A, Kühn C (2010) Recycling of Solanum sucrose transporters expressed in yeast, tobacco, and in mature phloem sieve elements. Mol Plant 3:1064–1074

    Article  CAS  Google Scholar 

  • Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272

    Article  CAS  Google Scholar 

  • Liski J, Palosuo T, Peltoniemi M, Sievänen R (2005) Carbon and decomposition model Yasso for forest soils. Ecol Model 189:168–182

    Article  CAS  Google Scholar 

  • Long JN, Smith FW (1988) Leaf area – sapwood area relations of lodgepole pine as influenced by stand density and site index. Can For Res 18:247–250

    Article  Google Scholar 

  • Magnusson T (1995) Relationships between soil properties and the soil atmosphere in Swedish forest soils. Scan J For Res 10:209–217

    Article  Google Scholar 

  • Mäkelä A (1988) Models of pine stand development: an eco-physiological systems analysis. Univ Helsinki, Dept Silviculture, Res Notes 62:1–267

    Google Scholar 

  • Mäkelä A, Valentine HT (2006) The quarter-power scaling does not infer size-invariant hydraulic resistance in trees. J Theo Bio 243:283–285

    Article  Google Scholar 

  • Mäkelä A, Hari P, Berninger F, Hänninen H, Nikinmaa E (2004) Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature. Tree Physiol 24:369–376

    Article  Google Scholar 

  • Mäkelä A, Kolari P, Karimäki J, Nikinmaa E, Perämäki M, Hari P (2006) Modelling five years of weather-driven variation of GPP in a boreal forest. Agr For Meterol 139:382–398

    Article  Google Scholar 

  • Mäkelä A, Pulkkinen M, Kolari P, Lagergren F, Berbigier P, Lindroth A, Loustau D, Nikinmaa E, Vesala T, Hari P (2008) Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. Glob Change Biol 14:98–108

    Google Scholar 

  • Maselli F, Barbati A, Chiesi M, Chirici G, Corona P (2006) Use of remotely sensed and ancillary data for estimating forest gross primary productivity in Italy. Remote Sens Environ 100:563–575

    Article  Google Scholar 

  • McCulloh KA, Sperry JS, Adler FR (2003) Water transport in plants obeys Murray’s law. Nature 421:939–942

    Article  CAS  Google Scholar 

  • McGechan MB, Lewis DR (2002a) Sorption of phosphorus by soil, Part 1: Principles, equations and models. Biosyst Eng 82:1–24

    Article  Google Scholar 

  • McGechan MB, Lewis DR (2002b) Sorption of phosphorus by soil, Part 2: Measurement methods, results and model parameter values. Biosyst Eng 82:115–130

    Article  Google Scholar 

  • McMurtrie RE, Gholz HL, Linder S, Gower ST (1994) Climatic factors controlling the productivity of pine stands: a model-based analysis. Ecol Bull 43:173–188

    Google Scholar 

  • McQueen JC, Minchin PEH, Thorpe MR, Silvester WB (2005) Short-term storage of carbohydrate in stem tissue of apple (Malus domestica), a woody perennial: evidence for involvement of the apoplast. Funct Plant Biol 32:1027–1031

    Article  CAS  Google Scholar 

  • Mecke M, Ilvesniemi H (1999) Near-saturated hydraulic conductivity and water retention in coarse podzol profiles. Scand For Res 14:391–401

    Article  Google Scholar 

  • Medlyn B, Barrett D, Landsberg J, Sands P, Clement R (2003) Conversion of canopy intercepted radiation to photosynthate: review of modelling approaches for regional scales. Funct Plant Biol 30:153–169

    Article  Google Scholar 

  • Meinzer FC, Clearwater MJ, Goldstein G (2001) Water transport in trees: current perspectives, new insights and some controversies. Env Exp Bot 45:239–262

    Article  Google Scholar 

  • Melcher PJ, Goldstein G, Meinzer FC, Yount DE, Jones TJ, Holbrook NM, Huang CX (2001) Water relations of coastal and estuarine Rhizophora mangle: xylem pressure potential dynamics of embolism formation and repair. Oecologia 126:182–192

    Article  Google Scholar 

  • Melkerud P-A, Bain DC, Olsson MT (2003) Historical weathering based on chemical analyses of two Spodosols in southern Sweden. Water Air Soil Poll Focus 3:49–61

    Article  CAS  Google Scholar 

  • Mencuccini M, Hölttä T (2010) The significance of phloem transport for the speed of link between canopy photosynthesis and belowground respiration. New Phytol 185:189–203

    Article  CAS  Google Scholar 

  • Mencuccini M, Hölttä T, Petit G, Magnani F (2007) Sanio’s laws revisited. Size-dependent changes in xylem architecture of trees. Ecol Lett 10:1084–1093

    Article  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer, Dordrecht

    Book  Google Scholar 

  • Milburn JA (1996) Sap ascent on vascular plants: challengers to the cohesion theory ignore the significance if immature xylem and recycling of Münch water. Ann Bot 78:399–407

    Article  Google Scholar 

  • Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1–8

    Article  Google Scholar 

  • Milner EM (2010) Magnificent trees of Britain. National Trust Books, London

    Google Scholar 

  • Minchin PEH, Thorpe MR (1984) Apoplastic phloem unloading in the stem of bean. J Exp Bot 35:538–550

    Article  Google Scholar 

  • Minchin PEH, Thorpe MR (1987) Measurement of unloading and reloading of photoassimilate within the stem of bean. J Exp Bot 38:211–220

    Article  Google Scholar 

  • Moldrup P, Olesen T, Gamst J, Schjønning P, Yamaguchi T, Rolston DE (2000a) Predicting the gas diffusion coefficient in repacked soil: water-induced linear reduction model. Soil Sci Soc Am J 64:1588–1594

    Article  CAS  Google Scholar 

  • Moldrup P, Olesen T, Schjønning P, Yamaguchi T, Rolston DE (2000b) Predicting the gas diffusion coefficient in undisturbed soil from water characteristics. Soil Sci Soc Am J 64:94–100

    Article  CAS  Google Scholar 

  • Moncrieff JB, Fang C (1999) A model for soil CO2 production and transport 2: application to a Florida Pinus elliottii plantation. Agric For Meteorol 95:237–256

    Article  Google Scholar 

  • Nikinmaa E (1992) Analyses of the growth of Scots Pine; matching structure with function. Acta For Fenn 235:1–68

    Google Scholar 

  • Nikinmaa E, Kaipiainen L, Mäkinen M, Ross J, Sasonova T (1996) Geographical variation in the regularities of woody structure and water transport. In: Hari P, Ross J, Mecke M (eds) Production process of Scots Pine: geographical variation and models. Acta For Fenn 254:49–78

    Google Scholar 

  • Nikinmaa E, Goulet J, Messier C, Sievänen R, Perttunen J, Lehtonen M (2003) Shoot growth and crown development; the effect of crown position in 3D simulations. Tree Physiol 23:129–136

    Article  Google Scholar 

  • Nilsson SI, Andersson S, Valeur I, Persson T, Bergholm J, Wirén A (2001) Influence of dolomite lime on leaching and storage of C, N and S in a Spodosol under Norway spruce (Picea abies (L.) Karst.). For Ecol Manag 146:55–73

    Article  Google Scholar 

  • Nobel PS (1991) Physiochemical and environmental plant physiology. Academic, San Diego

    Google Scholar 

  • Olsson MT, Melkerud P-A (2000) Weathering in three podzolized pedons on glacial deposits in northern Sweden and central Finland. Geoderma 94:149–161

    Article  CAS  Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Phys 48:191–222

    Article  CAS  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  CAS  Google Scholar 

  • Peltovuori T (2006) Phosphorus in agricultural soils of Finland -- characterization of reserves and retention in mineral soil profiles. Dissertation, University of Helsinki, Pro Terra 26

    Google Scholar 

  • Perämäki M, Nikinmaa E, Sevanto S, Ilvesniemi H, Siivola E, Hari P, Vesala T (2001) Tree stem diameter variation and transpiration in Scots pine; an analysis using dynamic sap flow model. Tree Physiol 21:889–897

    Article  Google Scholar 

  • Perämäki M, Vesala T, Nikinmaa E (2005) Modeling the dynamics of pressure propagation and diameter variation in tree. Tree Physiol 25:1091–1099

    Article  Google Scholar 

  • Petit G, Anfodillo T, Mencuccini M (2008) Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees. New Phytol 177:653–664

    Article  Google Scholar 

  • Phillips NG, Ryan MG, Bond BJ, McDovell NG, Hinckley TM, Čermák J (2003) Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiol 23:237–245

    Article  CAS  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194

    Article  Google Scholar 

  • Piirainen S, Finér L, Mannerkoski H, Starr M (2007) Carbon, nitrogen and phosphorus leaching after site preparation at a boreal forest clear-cut area. Forest Ecol Manage 243:10–18

    Article  Google Scholar 

  • Priestley CBH, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Pumpanen J, Ilvesniemi H, Keronen P, Nissinen A, Pohja T, Vesala T, Hari P (2001) An open chamber system for measuring soil surface CO2 efflux: analysis of error sources related to the chamber system. J Geophys Res 106(D8):7985–7992

    Article  CAS  Google Scholar 

  • Pumpanen JS, Heinonsalo J, Rasilo T, Hurme K-R, Ilvesniemi H (2009) Carbon balance and allocation of assimilated CO2 in Scots pine, Norway spruce and Silver birch seedlings determined with gas exchange measurements and 14C pulse labelling in laboratory conditions. Trees Struct Funct 23:611–621

    Article  CAS  Google Scholar 

  • Rannik Ü, Kolari P, Vesala T, Hari P (2006) Uncertainties in measurement and modelling of net ecosystem exchange of a forest ecosystem at different time scales. Agric For Meteorol 138:244–257

    Article  Google Scholar 

  • Room PM, Maillette L, Hanan JS (1994) Module and metamer dynamics and virtual plants. Adv Ecol Res 25:105–157

    Article  Google Scholar 

  • Ruehr NK, Offermann CA, Gessler A, Winkler JB, Ferrio JP, Buchmann N, Barnard RL (2009) Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol 184:950–961

    Article  CAS  Google Scholar 

  • Running S, Gower S (1991) FOREST-BGC, a general model of forest ecosystem processes for regional applications. II dynamic carbon allocation and nitrogen budgets. Tree Physiol 9:147–160

    Article  CAS  Google Scholar 

  • Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer JR, Field CB (eds) Scaling physiological processes: leaf to globe. Academic, San Diego

    Google Scholar 

  • Ryan MJ, Yoder B (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242

    Article  Google Scholar 

  • Saarela KE, Harju L, Rajander J, Lill JO, Heselius SJ, Lindroos A, Mattsson K (2005) Elemental analyses of pine bark and wood in an environmental study. Sci Total Environ 343:231–241

    Article  CAS  Google Scholar 

  • Salleo S, Lo Gullo M, Trifilo P, Nardini A (2004) New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis. Plant Cell Environ 27:1065–1076

    Article  Google Scholar 

  • Saranpää P (1990) Heartwood formation in stems of Pinus sylvestris L. Publ Dept Bot, Univ Helsinki 14:1–22

    Google Scholar 

  • Scherer HW (2009) Sulfur in soils. J Plant Nutr Soil Sci 172:326–335

    Article  CAS  Google Scholar 

  • Schlentner RE, van Cleve K (1985) Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can J For Res 15:97–106

    Article  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  Google Scholar 

  • Schulze ED, Cermak J, Matyssek R, Penka M, Zimmerman R, Vasicek F, Gries W, Kuèera J (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees – a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66:475–483

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443:205–209

    Article  CAS  Google Scholar 

  • Sevanto S, Vesala T, Perämäki M, Nikinmaa E (2002) Time lags for xylem and stem diameter variations in a Scots pine tree. Plant Cell Environ 25:1071–1077

    Article  Google Scholar 

  • Sevanto S, Vesala T, Perämäki M, Nikinmaa E (2003) Sugar transport together with environmental conditions controls time lags between xylem and stem diameter changes. Plant Cell Environ 26:1257–1265

    Article  Google Scholar 

  • Sevanto S, Hölttä T, Hirsikko A, Vesala T, Nikinmaa E (2005) Determination of thermal expansion of green wood and the accuracy of tree stem diameter variation measurements. Bor Environ Res 10:437–445

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form – the pipe model theory. I. Basic analyses. Jpn J Ecol 14:97–105

    Google Scholar 

  • Simmoneau T, Habib R, Goutouly JP, Huguet JG (1993) Diurnal changes in stem diameter depend upon variations in water content: direct evidence in peach trees. J Exp Bot 44:615–621

    Article  Google Scholar 

  • Simojoki A, Garcia H, Pihlatie M, Pumpanen J, Kurola J, Salkinoja-Salonen M, Hari P (2008) Environmental factors in soil. In: Hari P, Kulmala L (eds) Boreal forest and climate change, vol 34, Advances in global change research. Springer, Dordrecht

    Google Scholar 

  • Šimůnek J, Suarez DL (1993) Modeling of carbon dioxide transport and production in soil 1. Model development. Water Resour Res 29:487–497

    Article  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J 54:1619–1625

    Article  Google Scholar 

  • Smith ML, Ollinger SV, Martin ME, Aber JD, Hallett RA, Goodale CL (2002) Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecol Appl 12:1286–1302

    Article  Google Scholar 

  • Sokolova TA, Alekseeva SA (2008) Adsorption of sulfate ions by soils (a review). Eurasian Soil Sci 41:140–148

    Article  Google Scholar 

  • Solantie R (1981) Lumipeitteen vesiarvon vuotuinen maksimi ja sen ajankohta. Vesitalous 5, Helsinki (in Finnish)

    Google Scholar 

  • Stenberg P (1996) Simulations of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiol 16:99–108

    Article  Google Scholar 

  • Steppe K, De Pauw DJW, Lemeur R, Vanrolleghem PA (2006) A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol 26:257–273

    Article  Google Scholar 

  • Stevens GC, Perkins AL (1992) The branching habits and life history of woody plants. Am Nat 139:267–275

    Article  Google Scholar 

  • Suarez DL, Šimůnek J (1993) Modeling of carbon dioxide transport and production in soil 2. Parameter selection, sensitivity analysis and comparison of model predictions to field data. Water Resour Res 29:499–513

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tang J, Baldicchi DD, Qi Y, Xu L (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meteorol 118:207–220

    Article  Google Scholar 

  • Thompson MV (2006) Phloem: the long and the short of it. Trends Plant Sci 11:26–32

    Article  CAS  Google Scholar 

  • Thompson MV, Zwieniecki MA (2005) The role of potassium in long distance transport in plants. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier Academic Press, Boston

    Google Scholar 

  • Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Goldstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Meteorol 113:185–222

    Article  Google Scholar 

  • Troeh FR, Jabro JD, Kirkham D (1982) Gaseous diffusion equations for porous materials. Geoderma 27:239–253

    Article  Google Scholar 

  • Turcu VE, Jones SB, Or D (2005) Continuous soil carbon dioxide and oxygen measurements and estimation of gradient-based gaseous flux. Vadose Zone J 4:1161–1169

    Article  CAS  Google Scholar 

  • Turgeon R (2010) The puzzle of phloem pressure. Plant Physiol 154:578–581

    Article  CAS  Google Scholar 

  • Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyers T, Gower ST, Gregory M (2003) A cross-biome comparison of daily light use efficiency for gross primary production. Glob Change Biol 9:383–395

    Article  Google Scholar 

  • Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiol 88:574–580

    Article  CAS  Google Scholar 

  • Tyree MT, Yang S (1990) Water-storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms. Planta 182:420–426

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, New York

    Google Scholar 

  • Tyree MT, Salleo S, Nardini A, Lo Gullo MA, Mosca R (1999) Refilling of embolized vessels in young stems of laurel: do we need a new paradigm? Plant Physiol 120:11–21

    Article  CAS  Google Scholar 

  • Ukonmaanaho L, Starr M (2002) Major nutrients and acidity: budgets and trends at four remote boreal stands in Finland during the 1990s. Sci Total Environ 297:21–41

    Article  CAS  Google Scholar 

  • Väänänen R (2008) Phosphorus retention in forest soils and the functioning of buffer zones used in forestry. Dissertation, University of Helsinki. Dissertationes Forestales 60, 42 p

    Google Scholar 

  • Väänänen R, Hristov J, Tanskanen N, Hartikainen H, Nieminen M, Ilvesniemi H (2008) Phosphorus sorption properties in podzolic forest soils and soil solution phosphorus concentration in undisturbed and disturbed soil profiles. Boreal Environ Res 13:553–567

    Google Scholar 

  • Vakkilainen P (1986) Haihdunta. In: Mustonen S (ed) Sovellettu hydrologia. Mäntän kirjapaino, Mänttä (in Finnish)

    Google Scholar 

  • van Dijk AIJM, Dolman AJ, Schulze ED (2005) Radiation, temperature, and leaf area explain ecosystem carbon fluxes in boreal and temperate European forests. Glob Biogeochem Cy 19:GB2029

    Article  CAS  Google Scholar 

  • Vesala T, Hölttä T, Perämäki M, Nikinmaa E (2003) Refilling of hydraulically isolated embolised vessels: model calculations. Ann Bot 91:419–428

    Article  Google Scholar 

  • Waring RH, Running SW (1978) Sapwood water storage: its contribution to transpiration and effect on water conductance through the stems of old-growth Douglas fir. Plant Cell Environ 1:131–140

    Article  Google Scholar 

  • Waring RH, Whitehead D, Jarvis PG (1979) The contribution of stored water to transpiration in Scots pine. Plant Cell Environ 2:309–317

    Article  Google Scholar 

  • Waring RH, Schroeder PE, Oren R (1982) Application of pipe model theory to predict canopy leaf area. Can J For Res 12:556–560

    Article  Google Scholar 

  • Watson M, Casper BB (1984) Morphogenetic constraints on patterns of carbon distribution in plants. Ann Rev Ecol Syst 15:233–258

    Article  Google Scholar 

  • Weitz JS, Ogle K, Horn HS (2006) Ontogenetically stable hydraulic design in woody plants. Funct Ecol 20:191–199

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    Article  CAS  Google Scholar 

  • Whitehead D, Livingston NJ, Kelliher FM, Hogan KP, Pepin S, McSeveny TM, Byers JN (1996) Response of transpiration and photosynthesis to a transient change in illumination foliage area for a Pinus radiata D. Don tree. Plant Cell Environ 19:949–957

    Article  Google Scholar 

  • Widén B, Majdi H (2001) Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Can J For Res 31:786–796

    Article  Google Scholar 

  • Williams M, Rastetter EB, Fernandes DN et al (1996) Modeling the soil–plant–atmosphere continuum in a Quercus–Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant Cell Environ 19:911–927

    Article  Google Scholar 

  • Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001) A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric For Meteorol 106:153–168

    Article  Google Scholar 

  • Wood WW, Petraitis MJ (1984) Origin and distribution of carbon dioxide in the unsaturated zone of the southern high plains of Texas. Water Resour Res 20:1193–1208

    Article  CAS  Google Scholar 

  • Woodruff DR, Bond BJ, Meinzer FC (2004) Does turgor limit growth in tall trees? Plant Cell Environ 27:229–236

    Article  Google Scholar 

  • Yuan W, Liu S, Gua Z, Guo Z, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu Y, Law BE, Stoy PC, Vesala T, Wofsy SC (2007) Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric For Meteorol 143:189–207

    Article  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin

    Google Scholar 

  • Zweifel R, Item H, Häsler R (2001) Link between diurnal stem radius changes and tree water relations. Tree Physiol 21:869–877

    Article  CAS  Google Scholar 

  • Zwieniecki MA, Holbrook NM (2009) Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci 14:530–534

    Article  CAS  Google Scholar 

  • Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydraulic properties of individual xylem vessels of Fraxinus americana. J Exp Bot 52:257–264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teemu Hölttä , Teemu Hölttä , Jukka Pumpanen , Jukka Pumpanen , Pertti Hari , Minna Pulkkinen or Pertti Hari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hölttä, T. et al. (2013). Fluxes of Carbon, Water and Nutrients. In: Hari, P., Heliövaara, K., Kulmala, L. (eds) Physical and Physiological Forest Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5603-8_5

Download citation

Publish with us

Policies and ethics