Skip to main content

Species and Strain Selection

  • Chapter
  • First Online:
Algae for Biofuels and Energy

Part of the book series: Developments in Applied Phycology ((DAPH,volume 5))

Abstract

The choice of the best microalgae strains is an important first step for the commercial-scale production of biofuels using algae. The diversity of the microalgae presents both an opportunity and a challenge in the selection process. For large-scale production the species and strains to be selected need to fulfill a range of criteria for efficient high-productivity cultivation (e.g. their temperature and salinity tolerance, efficiency and mechanisms of uptake of inorganic carbon, photosynthetic capacity, lipid content and quality, shear tolerance etc.), harvestability (e.g. cells size and morphology), and extractability (e.g. cell covering). A rapid approach to directed screening as well as the possibility of ‘in-culture’ strain selection and further strain improvement is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Detailes of basic analytical methods can be found in Chapter 16 of this book.

References

  • Aach HG (1952) Über Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstärken und Nitratmengen. Arch Mikrobiol 17:213–246

    Google Scholar 

  • Abou-Shanab R, Hwang J-H, Cho Y, Min B, Jeon B-H (2011) Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl Energy 88:3300–3306

    CAS  Google Scholar 

  • Allen MM (1968) Simple conditions for growth of unicellular blue-green algae on plates. J Phycol 4:1–4

    CAS  Google Scholar 

  • Alonso DL, Grima EM, Perez JAS, Sanchez JLG, Camacho FG (1992a) Isolation of clones of Isochrysis galbana rich in eicosapentaenoic acid. Aquaculture 102:363–371

    Google Scholar 

  • Alonso L, Grima EM, Perez JAS, Sanchez JLG, Camacho FG (1992b) Fatty acid variation among different isolates of a single strain of Isochrysis galbana. Phytochemistry 31:3901–3904

    CAS  Google Scholar 

  • Alonso DL, Delcastillo CIS, Sanchez JLG, Perez JAS, Camacho FG (1994) Quantitative genetics of fatty acid variation in Isochrysis galbana (Prymnesiophyceae) and Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 30:553–558

    Google Scholar 

  • Andersen RA, Kawachi M (2005) Traditional microalgae isolation techniques. In: Andersen RA (ed) Algal Culturing Techniques. Elsevier, Amsterdam, pp 83–100

    Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou SG, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Scheartz DC, Thamatrakoln K, Valentine K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    CAS  Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of Rubisco, plastidsm pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071

    CAS  Google Scholar 

  • Banse K (1976) Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size – A review. J Phycol 12:135–140

    Google Scholar 

  • Barbosa MJ, Albrecht M, Wijffels RH (2003) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83:112–120

    CAS  Google Scholar 

  • Barclay B, Nagle N, Terry K, Roessler P (1985) Collecting and screening microalgae from shallow, inland saline habitats. SERI/CP-23-2700, pp 52–68

    Google Scholar 

  • Barclay WR, Terry KL, Nagle NJ, Weissman JC, Goebel RP (1987) Potential of new strains of marine and inland salt-adapted microalgae for aquaculture. J World Aquacult Soc 18:218–228

    Google Scholar 

  • Belay A (1997) Mass culture of Spirulina outdoors – the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 131–158

    Google Scholar 

  • Benemann JR (1989) The future of microalgal biotechnology. In: Cresswell RC, Rees TAV, Shah M (eds) Algal and cyanobacterial biotechnology. Longman Scientific & Technical, Harlow, pp 317–337

    Google Scholar 

  • Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300

    CAS  Google Scholar 

  • Berner T, Dubinsky Z, Wyman K, Falkowski PG (1989) Photoadaptation and the ‘package’ effect in Dunaliella tertiolecta (Chlorophyceae). J Phycol 25:70–78

    CAS  Google Scholar 

  • Bischoff HW, Bold HC (1963) Some soil algae from Enchanted Rock and related algal species, Phycological studies IV. University of Texas, Austin, pp 1–95

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  • Borowitzka MA (1988) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 257–287

    Google Scholar 

  • Borowitzka MA (1992a) Algal biotechnology products and processes: matching science and economics. J Appl Phycol 4:267–279

    Google Scholar 

  • Borowitzka MA (1992b) Comparing carotenogenesis in Dunaliella and haematococcus: implications for commercial production strategies. In: Villa TG, Abalde J (eds) Profiles on biotechnology. Universidade de Santiago de Compostela, Santiago de Compostela, pp 301–310

    Google Scholar 

  • Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15

    CAS  Google Scholar 

  • Borowitzka MA (1998) Limits to growth. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer, Berlin, pp 203–226

    Google Scholar 

  • Borowitzka MA (1999) Economic evaluation of microalgal processes and products. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 387–409

    Google Scholar 

  • Borowitzka MA (2010a) Algae oils for biofuels: chemistry, physiology, and production. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 271–289

    Google Scholar 

  • Borowitzka MA (2010b) Carotenoid production using microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 225–240

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988) Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures of Dunaliella salina. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, Barking, pp 371–381

    Google Scholar 

  • Borowitzka MA, Moheimani NR (2010) Sustainable biofuels from algae. Mitig Adapt Strat Global Change 1–13. doi:10.1009/s11027-010-9271-9

  • Borowitzka LJ, Moulton TP, Borowitzka MA (1985) Salinity and the commercial production of beta-carotene from Dunaliella salina. Nova Hedwigia Beih 81:217–222

    Google Scholar 

  • Brand JJ (2004) Application and theory of algal cryopreservation. Nova Hedwigia 79:175–189

    Google Scholar 

  • Chabrol E, Charonnet R (1937) Une novelle reaction pour l’etude des lipides. Presse Med 45:1713

    CAS  Google Scholar 

  • Chauton MS, Størseth TR, Johnsen G (2003) High resolution magic angle spinning 1H NMR analysis of whole cells of Thalassiosira pseudonana (Bacillariophyceae): broad range analysis of metabolic composition and nutritional value. J Appl Phycol 15:533–542

    Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47

    CAS  Google Scholar 

  • Cheng Y-S, Zheng Y, VanderGheynst JS (2011) Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids 46:95–103

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  Google Scholar 

  • Chisti Y, Moo-Young M (1986) Disruption of microbial cells for ­intracellular products. Enzyme Microb Technol 8:194–204

    CAS  Google Scholar 

  • Collins S, Bell G (2004) Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:566–569

    CAS  Google Scholar 

  • Cooksey KE, Guckert JB, Williams SA, Callis PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile red. J Microbiol Methods 6:333–345

    CAS  Google Scholar 

  • Cooper MS, Hardin WR, Petersen TW, Cattolico RN (2010) Visualising green oil in live algal cells. J Biosci Bioeng 109:198–201

    CAS  Google Scholar 

  • Cysewski GR, Lorenz RT (2004) Industrial production of microalgal cell-mass and secondary products – species of high potential: Haematococcus. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 281–288

    Google Scholar 

  • Davis R, Aden A, Pienkos P (2011) Techno-economic analysis of microalgae for fuel production. Appl Energy 88:3524–3531

    Google Scholar 

  • Dean AP, Sigee DC, Estrada B, Pittmann JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507

    CAS  Google Scholar 

  • Demirbas A (2006) Oily products from mosses and algae via pyrolysis. Energy Source Part A 28:933–940

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    CAS  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny DJ, van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    CAS  Google Scholar 

  • Doan TY, Obbard JP (2011) Enhanced lipid production in Nannochloropsis sp. using fluorescence-activated cell sorting. GBC Bioenergy 3:264–270

    CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1012

    CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol A 57–58:223–231

    Google Scholar 

  • Falkowski PG, Owens TG (1978) Effects of light intensity on photosynthesis and dark respiration in six species of marine phytoplankton. Mar Biol 45:289–295

    CAS  Google Scholar 

  • Flameling IA, Kromkamp J (1994) Responses of respiration and photosynthesis of Scenedesmus protuberans Fritsch to gradual and steep salinity increases. J Plankton Res 16:1781–1791

    Google Scholar 

  • Folch J, Lees M, Stanley GHS (1951) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Google Scholar 

  • Frenz J, Largeau C, Casadevall E (1989) Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii. Enzyme Microb Technol 11:717–724

    CAS  Google Scholar 

  • Geider RJ, Osborne BA (1989) Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol 112:327–341

    Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    CAS  Google Scholar 

  • Goldman JC (1977) Temperature effects on phytoplankton growth in continuous culture. Limnol Oceanogr 22:932–936

    Google Scholar 

  • Goldman JC, Azov Y, Riley CB, Dennett MR (1982a) The effect of pH in intensive microalgal cultures. I. Biomass regulation. J Exp Mar Biol Ecol 57:1–13

    CAS  Google Scholar 

  • Goldman JC, Riley CB, Dennett MR (1982b) The effect of pH in intensive microalgal cultures. II. Species competition. J Exp Mar Biol Ecol 57:15–24

    Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    CAS  Google Scholar 

  • Grobbelaar JU (2000) Physiological and technical considerations for optimising algal cultures. J Appl Phycol 12:201–206

    Google Scholar 

  • Grobbelaar JU, Soeder CJ (1985) Respiration losses in planktonic green algae cultivated in raceway ponds. J Plankton Res 7:497–506

    Google Scholar 

  • Gudin C, Chaumont D (1991) Cell fragility – the key problem of microalgae mass production in closed photobioreactors. Bioresour Technol 38:145–151

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    CAS  Google Scholar 

  • Halldal P, French C (1958) Algal growth in crossed gradients of light intensity and temperature. Plant Physiol 33:252

    Google Scholar 

  • Harding K, Müller J, Lorenz M, Timmermann H, Friedl T, Day JD, Benson EE (2008) Deployment of the encapsulation/dehydration protocol to cryopreserve microalgae held at the Sammlung von Algenkulturen, Universität Göttingen, Germany. Cryoletters 29:15–20

    Google Scholar 

  • Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:1–6

    Google Scholar 

  • Heraud P, Beardall J, McNaughton D, Wood BR (2007) In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol Lett 275:24–30

    CAS  Google Scholar 

  • Hondzo M, Lyn D (1999) Quantified small-scale turbulence inhibits the growth of a green alga. Freshwater Biol 41:51–61

    Google Scholar 

  • Hoover TE, Berkshire DC (1969) Effects of hydration on carbon dioxide exchange accross an air-water interface. J Geophys Res 72:456–464

    Google Scholar 

  • Huang GH, Chen G, Chen F (2009) Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenergy 33:1386–1392

    CAS  Google Scholar 

  • Humphrey GF (1975) The photosynthesis:respiration ratio of some unicellular marine algae. J Exp Mar Biol Ecol 18:111–119

    Google Scholar 

  • Jansen MAK, Mattoo AK, Edelman M (1999) D1-D2 protein degradation in the chloroplast. Complex light saturation kinetics. Eur J Biochem 260:527–532

    CAS  Google Scholar 

  • Johnson KR, Ellis G, Toothill C (1977) The sulfophosphovanillin reaction for serum lipids: a reappraisal. Clin Chem 23:1678

    Google Scholar 

  • Kagami M, Urabe J (2001) Phytoplankton growth rates as a function of cell size: an experimental test in Lake Biwa. Limnology 2:111–117

    Google Scholar 

  • Kates M, Volcani BE (1966) Lipid components of diatoms. Biochim Biophys Acta 116:264–278

    CAS  Google Scholar 

  • Kessler E (1986) Limits of growth of five Chlorella species in the presence of toxic heavy metals. Arch Hydrobiol Suppl Algol Stud 73:123–128

    CAS  Google Scholar 

  • Kessler E, Kauer G, Rahat M (1991) Excretion of sugars by Chlorella species capable and incapable of symbiosis with Hydra viridis. Botanica Acta 104:58–63

    CAS  Google Scholar 

  • Key T, McCarthy A, Campbell DA, Six C, Roy S, Finkel ZV (2010) Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ Microbiol 12:95–104

    CAS  Google Scholar 

  • Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous transformation in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA 108:21265–21269

    CAS  Google Scholar 

  • Kliphuis AMJ, Martens DE, Janssen M, Wijffels RH (2011) Effect of O2:CO2 ratio on the primary metabolism of Chlamydomonas reinhardtii. Biotechnol Bioeng 108:2390–2402

    CAS  Google Scholar 

  • Knapp S, McNeill J, Turland NJ (2011) Changes to publication requirements made at the XVIII International Botanical Congress in Melbourne: what does e-publication mean for you? Taxon 60:1498–1501

    Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Proc Technol 86:1059–1070

    CAS  Google Scholar 

  • Kobiyama A, Tanaka S, Kaneko Y, Lim PT, Ogata T (2010) Temperature tolerance and expression of heat shock protein 70 in the toxic dinoflagellate Alexandrium tamarense (Dinophyceae). Harmful Algae 9:180–185

    CAS  Google Scholar 

  • Kodama M, Ikemoto H, Miyachi S (1993) A new species of highly CO2-tolerant fast-growing marine microalga for high-density cultivation. J Mar Biotechnol 1:21–25

    Google Scholar 

  • Kok B (1973) Photosynthesis. In: Gibbs M, Hollaender A, Kok B, Krampitz LO, San Pietro A (eds) Proceedings of the workshop on bio solar hydrogen conversion. National Science Foundation, Bethesda, pp 22–30

    Google Scholar 

  • Korb RE, Saville PJ, Johnston AM, Raven JA (1997) Sources of inorganic carbon for photosynthesis by three species of marine diatom. J Phycol 33:433–440

    CAS  Google Scholar 

  • Kromkamp JC, Beardall J, Sukenik A, Kopecky J, Masojidek J, Van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems. Aquat Microb Ecol 56:309–322

    Google Scholar 

  • Kronick MN, Grossman PD (1983) Immunoassay techniques with fluorescent phycobilin conjugates. Clin Chem 29:1582–1586

    CAS  Google Scholar 

  • Lakeman MB, Cattolico RA (2007) Cryptic diversity in phytoplankton cultures is revealed using a simple plating technique. J Phycol 43:662–674

    CAS  Google Scholar 

  • Lakeman MB, von Dassow P, Cattolico RA (2009) The strain concept in phytoplankton ecology. Harmful Algae 8:746–758

    Google Scholar 

  • Langer G, Nehrke G, Probert I, Ly J, Ziveri P (2009) Strain-specific responses of Emilianea huxley to changing seawater carbonate chemistry. Biogeosci Discussions 6:4361–4383

    Google Scholar 

  • Laurens LML, Wolfrum EJ (2011) Feasibility of spectroscopic characterization of algal lipids: chemometric correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. Bioeng Res 4:22–35

    Google Scholar 

  • Lee JW (2008) Designer organisms for photosynthetic production of ethanol from carbon dioxide. PCT Patent Application WO2008/039450

    Google Scholar 

  • Lee YK, Pirt SJ (1984) CO2 absorption rate in algal culture: effect of pH. J Chem Technol Biotechnol 34B:28–32

    Google Scholar 

  • Lee YK, Tay HS (1991) High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture. J Appl Phycol 3:95–101

    Google Scholar 

  • Lee JY, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S71–S74

    Google Scholar 

  • Lewin RA (1988) How to make algae make more oil. Appl Phycol Forum 5:3–4

    Google Scholar 

  • Li Y, Qin JG (2005) Comparison of growth and lipid content in three Botryococcus braunii strains. J Appl Phycol 17:551–556

    CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effect of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    CAS  Google Scholar 

  • Liang Y, Mai K, Sun S (2005) Differences in growth, total lipid content and fatty acid composition among 60 clones of Cylindrotheca fusiformis. J Appl Phycol 17:61–65

    CAS  Google Scholar 

  • Lu C, Vonshak A (1999) Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. J Appl Phycol 11:355–359

    Google Scholar 

  • Mandalam RK, Palsson BO (1995) Chlorella vulgaris (Chlorellaceae) does not secrete autoinhibitors at high cell densities. Am J Bot 82:955–963

    CAS  Google Scholar 

  • Marquez FJ, Sasaki K, Nishio N, Nagai S (1995) Inhibitory effect of oxygen accumulation on the growth of Spirulina platensis. Biotechnol Lett 17:225–228

    CAS  Google Scholar 

  • Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification – a review. Renew Sustain Energy Rev 10:248–268

    CAS  Google Scholar 

  • Melis A, Neidhardt J, Benemann J (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525

    Google Scholar 

  • Merkley N, Syvitski RT (2012) Profiling whole microalgal cells by high-resolution magic angle spinning (MR-MAS) magnetic resonance spectroscopy. J Appl Phycol 24:535–540

    Google Scholar 

  • Metzger P, Largeau C (1999) Chemicals from Botryococcus braunii. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 205–260

    Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    CAS  Google Scholar 

  • Mitsuhashi S, Hosaka K, Tomonaga E, Muramatsu H, Tanishita K (1995) Effects of shear flow on photosynthesis in a dilute suspension of microalgae. Appl Microbiol Biotechnol 42:744–749

    CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Google Scholar 

  • Moheimani NR, Borowitzka MA (2007) Limits to growth of Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96:27–36

    CAS  Google Scholar 

  • Moheimani NR, Isdepsky A, Lisec J, Raes E, Borowitzka MA (2011) Coccolithophorid algae culture in closed photobioreactors. Biotechnol Bioeng 108:2078–2087

    CAS  Google Scholar 

  • Molina Grima E, Sanchez Perez JA, Garcia Camacho F, Robles Medina A, Garcia-Jiminez P, Lopez Alonso D (1995) The production of polyunsaturated fatty acids by microalgae – from strain selection to product purification. Proc Biochem 30:711–719

    CAS  Google Scholar 

  • Molina Grima E, Sanchez Perez JA, Garcia Camacho F, Fernandez Sevilla JM, Acién Fernández FG (1996) Productivity analysis of outdoor chemostat cultures in tubular air-lift photobioreactors. J Appl Phycol 8:369–380

    Google Scholar 

  • Mou S, Xu D, Ye N, Zhang X, Liang C, Liang Q, Zheng Z, Zhuang Z, Miao J (2012) Rapid estimation of lipid content in an Antarctic ice alga (Chlamydomonas sp.) using the lipophilic fluorescent dye BIODIPY505/515. J Appl Phycol 24: 1169–1176

    Google Scholar 

  • Moulton TP, Sommer TR, Burford MA, Borowitzka LJ (1987) Competition between Dunaliella species at high salinity. Hydrobiologia 151–152:107–116

    Google Scholar 

  • Müller J, Friedl T, Hepperle D, Lorenz M, Day JG (2005) Distinction between multiple isolates of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing for conspecificity using amplifield fragment length polymorphism and its rDNA sequences. J Phycol 41:1236–1247

    Google Scholar 

  • Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspensions by reducing the content of light harvesting pigments. J Appl Phycol 9:503–510

    CAS  Google Scholar 

  • Nakajima Y, Ueda R (1999) Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigments. J Appl Phycol 11:151–201

    Google Scholar 

  • Nakajima Y, Ueda R (2000) The effect of reducing light-harvesting pigment on marine microalgae productivity. J Appl Phycol 12:285–290

    CAS  Google Scholar 

  • Ogawa T, Fujii T, Aiba S (1980) Effect of oxygen on the growth (yield) of Chlorella vulgaris. Arch Microbiol 127:25–31

    CAS  Google Scholar 

  • Ohad I, Keren N, Zer H, Gong H, Mor TS, Gal A, Tal S, Domovich Y (1994) Light-induced degradation of the photosystem II reaction centre D1 protein in vivo: an integrative approach. In: Baker NR, Boyer JR (eds) Photoinhibition of photosynthesis. From molecular mechanisms to the field. Bios Scientific Publishers, Oxford, pp 161–177

    Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RL, Inomata H (2009) Effect of inorganic carbon on photoautotrophic growth of microalga Chlorococcum littorale. Biotechnol Prog 25:492–498

    CAS  Google Scholar 

  • Patterson GML, Larsen LK, Moore RE (1994) Bioactive natural products from blue-green algae. J Appl Phycol 6:151–157

    CAS  Google Scholar 

  • Pollio A, Pinto G, Dellagreca M, Demaio A, Fiorentino A, Previtera L (1994) Progesterone bioconversion by microalgal cultures. Phytochemistry 37:1269–1272

    CAS  Google Scholar 

  • Raven JA (1997) Putting the C in phycology. Europ J Phycol 32:319–333

    Google Scholar 

  • Raven JA (2011) The cost of photoinhibition. Physiol Plantarum 142:87–104

    CAS  Google Scholar 

  • Reboud X, Bell G (1997) Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity 78:507–514

    Google Scholar 

  • Richmond A (1999) Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 353–386

    Google Scholar 

  • Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 125–177

    Google Scholar 

  • Rodolfi L, Zittelli GC, Barsanti L, Rosati C, Tredeci MR (2003) Growth medium recycling in Nannochloropsis sp. mass culture. Biomol Eng 20:243–248

    CAS  Google Scholar 

  • Rodolfi L, Zitelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    CAS  Google Scholar 

  • Roessler PG (1988) Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptica. J Phycol 24:394–400

    CAS  Google Scholar 

  • Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae – commercial implications and future research directions. J Phycol 26:393–399

    CAS  Google Scholar 

  • Roessler PG, Ohlrogge JB (1993) Cloning and characterization of the gene that encodes acetyl-coenzyme-A carboxylase in the alga Cyclotella cryptica. J Biol Chem 268:19254–19259

    CAS  Google Scholar 

  • Samek O, Jonáš A, Pilát Z, Zemánek P, Nedbal L, Tríska J, Kotas P, Trtílek M (2010) Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors 10:8635–8651

    CAS  Google Scholar 

  • Sánchez Mirón A, Cerón García MC, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Google Scholar 

  • Sasa T, Morimura Y, Tamiya H (1955) Seasonal variation of growth rate of various strains of unicellular algae under natural light- and temperature-conditions. J Gen Appl Microbiol 1:183–189

    Google Scholar 

  • Seckbach J, Baker AF, Shugarman PM (1970) Algae thrive under pure CO2. Nature 227:744–745

    CAS  Google Scholar 

  • Shaw PM, Jones GJ, Smith JD, Johns RB (1989) Intraspecific variations in the fatty acids of the diatom Skeletonema costatum. Phytochemistry 28:811–8115

    CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program – biodiesel from algae. National Renewable Energy Laboratory, Golden, Colorado. NREL/TP-580-24190, pp 1–328

    Google Scholar 

  • Sieburth JM (1959) Acrylic acid, an ‘antibiotic’ principle in Phaeocystis blooms in Antarctic waters. Science 132:676–677

    Google Scholar 

  • Sieracki M, Poulton N, Crosbie N (2005) Automated isolation techniques for microalgae. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 101–116

    Google Scholar 

  • Sinigalliano CD, Winshell J, Guerrero MA, Scorzetti G, Fell JW, Eaton RW, Brand L, Rein KS (2009) Viable cell sorting of dinoflagellates by multiparameter flow cytometry. Phycologia 48:249–257

    Google Scholar 

  • Siver PA (1983) A new thermal gradient device for culturing algae. Br Phycol J 18:159–164

    Google Scholar 

  • Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43:717–726

    CAS  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nature Biotechnol 28:126–128

    CAS  Google Scholar 

  • Sukenik A (1999) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 41–56

    Google Scholar 

  • Taguchi S, Hirata JA, Laws EA (1987) Silicate deficiency and lipid synthesis in marine diatoms. J Phycol 23:260–267

    CAS  Google Scholar 

  • Tang EPY (1995) The allometry of algal growth rates. J Plankton Res 17:1325–1335

    Google Scholar 

  • Tang EPY, Peters RH (1995) The allometry of algal respiration. J Plankton Res 17:303–315

    Google Scholar 

  • Taylor R, Fletcher RL (1998) Cryopreservation of eukaryotic algae – a review of methodologies. J Appl Phycol 10:481–501

    Google Scholar 

  • Teoh ML, Phang SM, Chu WL (2012) Responses of Antarctic, temperate and tropical microalgae to temperature stress. J Appl Phycol doi:10.1007/s10811-012-9863-8

  • Thomas WH, Gibson CH (1990) Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein. Deep Sea Res 37:1583–1593

    Google Scholar 

  • Thomas WH, Scotten HL, Bradshaw JS (1963) Thermal gradient incubators for small aquatic organisms. Limnol Oceanogr 8:357–360

    Google Scholar 

  • Tillmann U, Alpermann TL, da Purificação RC, Krock B, Cembella A (2009) Intra-population clonal variability in allelochemical potency of the toxigenic dinoflagellate Alexandrium tamarense. Harmful Algae 8:759–769

    CAS  Google Scholar 

  • Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61:15–24

    CAS  Google Scholar 

  • Torzillo G, Sacchi A, Materassi R (1991a) Temperature as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Bioresour Technol 38:95–100

    Google Scholar 

  • Torzillo G, Sacchi A, Materassi R, Richmond A (1991b) Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J Appl Phycol 3:103–109

    Google Scholar 

  • Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U (2009) Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrogen Energy 34:4529–4536

    CAS  Google Scholar 

  • Turpin DH, Elrifi IR, Birch DG, Weger HG, Holmes JJ (1988) Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae. Can J Bot 66:2083–2097

    CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2007) Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 45:309–311

    Google Scholar 

  • Vonshak A (1987) Strain selection of Spirulina suitable for mass production. Hydrobiologia 151–152:75–77

    Google Scholar 

  • Vonshak A, Guy R (1992) Photoadaptation, photoinhibition and productivity in the blue-green alga, Spirulina platensis grown outdoors. Plant Cell Environ 15:613–616

    Google Scholar 

  • Vonshak A, Guy R, Poplawsky R, Ohad I (1988) Photoinhibition and its recovery in two strains of the cyanobacterium Spirulina platensis. Plant Cell Physiol 29:721–726

    CAS  Google Scholar 

  • Vonshak A, Torzillo G, Tomaseli L (1994) Use of chlorophyll fluorescence to estimate the effect of photoinhibition in outdoor cultures of Spirulina platensis. J Appl Phycol 6:31–34

    Google Scholar 

  • Vonshak A, Chanawongse L, Bunnag B, Tanticharoen M (1996) Light acclimation and photoinhibition in three Spirulina platensis (cyanobacteria) isolates. J Appl Phycol 8:35–40

    Google Scholar 

  • Weissman JC, Tillett DM, Goebel RP (1989) Design and operation of an outdoor microalgae test facility. Final subcontractors report. Solar Energy Research Institute, Golden, Colorado. SERI/STR-232-3569, pp 1–56

    Google Scholar 

  • Wu H, Volponi JV, Oliver AE, Parokh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci USA 108:3809–3814

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Borowitzka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Borowitzka, M.A. (2013). Species and Strain Selection. In: Borowitzka, M., Moheimani, N. (eds) Algae for Biofuels and Energy. Developments in Applied Phycology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9_4

Download citation

Publish with us

Policies and ethics