Skip to main content

Application of Density Matrix Methods to Ultrafast Processes

  • Conference paper
  • First Online:
Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

  • 1994 Accesses

Abstract

The density matrix method is a powerful theoretical technique to describe the ultrafast processes and to analyze the femtosecond time-resolved spectra in the pump-probe experiment. The dynamics of population and coherence of the system can be described by the evolution of density matrix elements. In this chapter, the applications of density matrix method on internal conversion and vibrational relaxation processes will be presented. As an example, the ultrafast internal conversion process of ππ* → nπ* transition of pyrazine will be presented, in which case the conical intersection is commonly believed to play an important role. A treatment with Q-dependent nonadiabatic coupling will be applied to deal with the internal conversion rate. Another important ultrafast process, vibrational relaxation, which usually takes place in sub-ps and ps range, will be treated using adiabatic approximation. Then the vibrational relaxation in water dimer and aniline will be chosen to demonstrate the calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nafie LA, Peticolas WL (1972) J Chem Phys 57:3145–3155

    Article  CAS  Google Scholar 

  2. Lin SH (1974) J Chem Phys 61:3810–3820

    Article  CAS  Google Scholar 

  3. Nitzan A, Silbey RJ (1974) J Chem Phys 60:4070–4075

    Article  CAS  Google Scholar 

  4. Fleming GR, Gijzeman OLJ, Lin SH (1974). J Chem Soc Faraday Trans 2, 70: 37–44

    Google Scholar 

  5. Nitzan A, Mukamel S, Jortner J (1975) J Chem Phys 63:200–207

    Article  CAS  Google Scholar 

  6. Laubereau A, Kaiser W (1978) Rev Mod Phys 50:607–665

    Article  CAS  Google Scholar 

  7. Oxtoby DW (1979) Adv Chem Phys 40:1–48

    Article  CAS  Google Scholar 

  8. Burcl R, Carter S, Handy NC (2003) Chem Phys Lett 373:357–365

    Article  CAS  Google Scholar 

  9. Barone V (2004) J Chem Phys 120:3059–3065

    Article  CAS  Google Scholar 

  10. Barone V (2005) J Chem Phys 122:14108

    Article  Google Scholar 

  11. Seidner L, Stock G, Sobolewski AL, Domcke W (1992) J Chem Phys 96:5298–5309

    Article  CAS  Google Scholar 

  12. Woywod C, Domcke W, Sobolewski AL, Werner H (1994) J Chem Phys 100:1400–1413

    Article  CAS  Google Scholar 

  13. Suzuki Y, Fuji T, Horio T, Suzuki T (2010) J Chem Phys 132:174302

    Article  Google Scholar 

  14. Blum K (1981) Density matrix theory and applications. Plenum Press, New York.

    Google Scholar 

  15. Edwards SF (ed) (1969) Many-body problems. W. A. Benjamin, New York

    Google Scholar 

  16. Fain B (2000) Irreversibilities in quantum mechanics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  17. Fain B (1980) Theory of rate processes in condensed media. Springer, Berlin

    Book  Google Scholar 

  18. Alden R, Islampour R, Ma H, Villaeys AA, Lin SH (1991) Density matrix method and femtosecond processes. World Scientific Pub Co Inc, Hackensack

    Google Scholar 

  19. Breene RG (1981) Theories of spectral line shape. Wiley, New York

    Google Scholar 

  20. Liang KK, Lin C, Chang H, Hayashi M, Lin SH (2006) J Chem Phys 125:154706

    Article  Google Scholar 

  21. Lin SH, Chang CH, Liang KK, Chang R, Shiu YJ, Zhang JM, Yang TS, Hayashi M, Hsu FC (2002) Adv Chem Phys 121:1–88

    Article  CAS  Google Scholar 

  22. Fridh C, Åsbrink L, Jonsson BÖ, Lindholm E (1972) Int J Mass Spectrom Ion Phys 8:101–118

    Article  CAS  Google Scholar 

  23. Suzuka I, Udagawa Y, Ito M (1979) Chem Phys Lett 64:333–336

    Article  CAS  Google Scholar 

  24. Bolovinos A, Tsekeris P, Philis J, Pantos E, Andritsopoulos G (1984) J Mol Spectrosc 103: 240–256

    Article  CAS  Google Scholar 

  25. Innes KK, Ross IG, Moomaw WR (1988) J Mol Spectrosc 132:492–544

    Article  CAS  Google Scholar 

  26. Oku M, Hou Y, Xing X, Reed B, Xu H, Chang C, Ng C, Nishizawa K, Ohshimo K, Suzuki T (2008) J Phys Chem A 112:2293–2310

    Article  CAS  Google Scholar 

  27. Seel M, Domcke W (1991) J Chem Phys 95:7806–7822

    Article  CAS  Google Scholar 

  28. Lin CK, Niu YL, Zhu CY, Shuai ZG, Lin SH (2011) Chem Asian J 6:2977–2985

    Article  CAS  Google Scholar 

  29. Carney GD (1978) Adv Chem Phys 37:305–379

    Article  CAS  Google Scholar 

  30. Bowman JM (1978) J Chem Phys 68:608–610

    Article  CAS  Google Scholar 

  31. Qian ZD, Zhang XG, Li XW, Kono H, Lin SH (1982) Mol Phys 47:713–719

    Article  Google Scholar 

  32. Noid DW, Marcus RA (1975) J Chem Phys 62:2119–2124

    Article  CAS  Google Scholar 

  33. Eastes W, Marcus RA (1974) J Chem Phys 61:4301–4306

    Article  CAS  Google Scholar 

  34. Chapman S, Garrett BC, Miller WH (1976) J Chem Phys 64:502–509

    Article  CAS  Google Scholar 

  35. Cohen M, Greita S, McEarchran RP (1979) Chem Phys Lett 60:445–450

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  37. Huang ZS, Miller RE (1989) J Chem Phys 91:6613–6631

    Article  CAS  Google Scholar 

  38. Nesbitt DJ, Field RW (1996) J Phys Chem 100:12735–12756

    Article  CAS  Google Scholar 

  39. Voth GA, Hochstrasser RM (1996) J Phys Chem 100:13034–13049

    Article  CAS  Google Scholar 

  40. Yamada Y, Okano J, Mikami N, Ebata T (2006) Chem Phys Lett 432:421–425

    Article  CAS  Google Scholar 

  41. Yamada Y, Okano J, Mikami N, Ebata T (2005) J Chem Phys 123:124316

    Article  Google Scholar 

  42. Ebata T, Minejima C, Mikami N (2002) J Phys Chem A 106:11070–11074

    Article  CAS  Google Scholar 

  43. Hutchinson JS, Reinhardt WP, Hynes JT (1983) J Chem Phys 79:4247–4260

    Article  CAS  Google Scholar 

  44. Ebata T, Kayano M, Sato S, Mikami N (2001) J Phys Chem A 105:8623–8628

    Article  CAS  Google Scholar 

  45. Werner U, Mitric R, Suzuki T, Bonacic-Kouteck V (2008) Chem Phys 349:319–324

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Y. Zhu or Sheng H. Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Niu, Y.L. et al. (2012). Application of Density Matrix Methods to Ultrafast Processes. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_4

Download citation

Publish with us

Policies and ethics