Skip to main content

Global Formulation for Gravity

  • Chapter
Teleparallel Gravity

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 173))

  • 1887 Accesses

Abstract

Due to their shared abelian gauge structure, Teleparallel Gravity and Electromagnetism are similar in several aspects. By analogy to the phase-factor approach to Maxwell’s theory, a teleparallel non-integrable phase-factor formalism for gravitation can be developed. It represents the quantum mechanical version of the classical gravitational force, and leads to simple descriptions of the Colella-Overhauser-Werner experiment and of the gravitational Aharonov-Bohm effect. In the classical (non-quantum) limit, it reduces to the force equation of Teleparallel Gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, C.N.: Phys. Rev. Lett. 33, 445 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  2. Wu, T.T., Yang, C.N.: Phys. Rev. D 12, 3845 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  3. Aldrovandi, R., Pereira, J.G., Vu, K.H.: Class. Quantum Gravity 21, 51 (2004). gr-qc/0310110

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Colella, R., Overhauser, A.W., Werner, S.A.: Phys. Rev. Lett. 34, 1472 (1974)

    Article  ADS  Google Scholar 

  5. Greenberger, D.: Ann. Phys. 47, 116 (1968)

    Article  ADS  Google Scholar 

  6. Greenberger, D., Overhauser, A.W.: Rev. Mod. Phys. 51, 43 (1979)

    Article  ADS  Google Scholar 

  7. Lämmerzahl, C.: Gen. Relativ. Gravit. 28, 1043 (1996). gr-qc/9605065

    Article  ADS  MATH  Google Scholar 

  8. Lämmerzahl, C.: Acta Phys. Pol. 29, 1057 (1998). gr-qc/9807072

    ADS  MATH  Google Scholar 

  9. Lawrence, A.K., Leiter, D., Samozi, G.: Nuovo Cimento B 17, 113 (1973)

    Article  ADS  Google Scholar 

  10. Ford, L.H., Vilenkin, A.: J. Phys. A 14, 2353 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bezerra, V.B.: Class. Quantum Gravity 8, 1939 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  12. Aharonov, Y., Bohm, D.: Phys. Rev. 115, 485 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Peshkin, M., Tonomura, A.: The Aharonov-Bohm Effect. Lecture Notes in Physics, vol. 340. Springer, Berlin (1989)

    Book  Google Scholar 

  14. Harris, E.G.: Am. J. Phys. 64, 378 (1996)

    Article  ADS  Google Scholar 

  15. Felsager, B.: Geometry, Particles, and Fields. Springer, New York (1998)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aldrovandi, R., Pereira, J.G. (2013). Global Formulation for Gravity. In: Teleparallel Gravity. Fundamental Theories of Physics, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5143-9_7

Download citation

Publish with us

Policies and ethics