Skip to main content

Stem Cell Culture: Optimizing Amidst the Complexity

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 8

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 8))

Abstract

Stem cell cultures are presently necessary to investigate the cellular and molecular mechanisms of stem cell biology, to perform pharmacology and toxicology screenings and to provide the material required for regenerative therapies. Hence, optimizing stem cell culture conditions is currently a major challenge in stem cell research. Stem cell culture conditions will never capture the extraordinary complexity of the stem cell niche. Stem cell culture must be viewed as a tool for which the living cell is the material. However, we must also keep in mind that cell culture converts stem cells themselves into tools for basic research or regenerative therapies. Therefore, optimal stem cell culture conditions must be defined according to the endpoint of the culture. Instructing stem cells not necessarily by mimicking the stem cell niche biology but by using artificial, well-controlled and reproducible devices is a realistic aim for the cell culturist. This in turn requires well-defined experimental conditions and real-time probing of the cultured cell environment. Suspension culture in controllable bioreactors is the method of choice for stem cell cultures intended for a final clinical or industrial use whereas microfluidic systems are better designed for dissecting the molecular mechanisms founding stemness. Not only the cell culture medium but also the chemistry, the physical properties and the topography of cell culture substrates are able to modulate stem cell self-renewal and to control stem cell fate. Hence, the design of surface-engineered substrates is the subject of intense and fruitful research. Finally, not only preserving the self-renewal and differentiation potential of stem cells in culture but also preserving their genetic integrity is mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amit M, Laevsky I, Miropolsky Y, Shariki K, Peri M, Itskovitz-Eldor J (2011) Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protoc 6(5):572–579

    Article  CAS  PubMed  Google Scholar 

  • Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, Walker JR, Flaveny CA, Perdew GH, Denison MS, Schultz PG, Cooke MP (2010) Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329(5997):1345–1348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Csete M (2005) Oxygen in the cultivation of stem cells. Ann N Y Acad Sci 1049:1–8

    Article  CAS  PubMed  Google Scholar 

  • Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Wu TYH, Brinker A, Peters EC, Hur W, Gray NS, Schultz PG (2003) Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci USA 100(13):7632–7637

    Article  CAS  PubMed  Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of Yap/Taz in mechanotransduction. Nature 474(7350):179–183

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  • Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108(7):2482–2505

    Article  CAS  PubMed  Google Scholar 

  • Lam RHW, Kim M-C, Thorsen T (2009) Culturing aerobic and anaerobic bacteria and mammalian cells with a microfluidic differential oxygenator. Anal Chem 81(14):5918–5924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lecault V, VanInsberghe M, Sekulovic S, Knapp DJFP, Wohrer S, Bowden W, McLaughlin T, Jarandehei A, Miller MM, Taghipour F, Falconnet D, White AK, Kent DG, Coply MR, Eaves CJ, Humphries RK, Piret JM, Hansen CL (2011) High-throughput analysis of single hematopoietic stem cell proliferation in perfusion microfluidic cell culture arrays. Nat Methods 8(7):581–586

    Article  CAS  PubMed  Google Scholar 

  • Lee JN, Jiang X, Ryan D, Whitesides GM (2004) Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 20(26):11684–11691

    Article  CAS  PubMed  Google Scholar 

  • Mazumdar J, O’Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, Simon MC (2010) O(2) regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12(10):1007–1013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meier RJ, Schreml S, Wang XD, Landthaler M, Babilas P, Wolfbeis OS (2011) Simultaneous photographing of oxygen and pH in vivo using sensor films. Angew Chem Int 50(46):10893–10896

    Article  CAS  Google Scholar 

  • Nakamura M, Namiki M, Okuyama A, Matsui T, Doi Y, Takeyama M, Fujioka H, Nishimune Y, Matsumoto K, Sonoda T (1987) Temperature sensitivity of human spermatogonia and spermatocytes in vitro. Arch Androl 19(2):127–132

    Article  CAS  PubMed  Google Scholar 

  • Oh S, Brammer KS, Li YSJ, Teng D, Engler AJ, Chien S, Jin S (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA 106(7):2130–2135

    Article  CAS  PubMed  Google Scholar 

  • Oppegard SC, Nam K-H, Carr JR, Skaalure SC, Eddington DT (2009) Modulating temporal and spatial oxygenation over adherent cellular cultures. PLoS One 4(9)

    Google Scholar 

  • Petrakis NL (1952) Temperature of human bone marrow. J Appl Physiol 4(7):549–553

    CAS  PubMed  Google Scholar 

  • Polk BJ, Stelzenmuller A, Mijares G, MacCrehan W, Gaitan M (2006) Ag/Agcl microelectrodes with improved stability for microfluidics. Sens Actuator B 114(1):239–247

    Article  CAS  Google Scholar 

  • Pompe T, Salchert K, Alberti K, Zandstra P, Werner C (2010) Immobilization of growth factors on solid supports for the modulation of stem cell fate. Nat Protoc 5(6):1042–1050

    Article  CAS  PubMed  Google Scholar 

  • Prowse ABJ, Chong F, Gray PP, Munro TP (2011) Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Res 6(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Przybyla LM, Voldman J (2012) Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. Proc Natl Acad Sci USA 109(3):835–840

    Article  CAS  PubMed  Google Scholar 

  • Regehr KJ, Domenech M, Koepsel JT, Carver KC, Ellison-Zelski SJ, Murphy WL, Schuler LA, Alarid ET, Beebe DJ (2009) Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9(15):2132–2139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28(6):611–615

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues NP, Sakai Y, Fujii T (2008) Cell-based microfluidic biochip for the electrochemical real-time monitoring of glucose and oxygen. Sens Actuator B 132(2):608–613

    Article  Google Scholar 

  • Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9(4):285–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steiner M-S, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40(9):4805–4839

    Article  CAS  PubMed  Google Scholar 

  • Ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A, Eroglu E, Siu RK, Nusse R (2011) Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 13(9):1070–1075

    Article  PubMed  Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa SI, Muguruma K, Sasai Y (2007) A rock inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686

    Article  CAS  PubMed  Google Scholar 

  • Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20(12):2388–2403

    Article  CAS  PubMed  Google Scholar 

  • Wion D, Christen T, Barbier EL, Coles JA (2009) Po(2) matters in stem cell culture. Cell Stem Cell 5(3):242–243

    Article  CAS  PubMed  Google Scholar 

  • Wu C-C, Luk H-N, Lin Y-TT, Yuan C-Y (2010) A Clark-type oxygen chip for in situ estimation of the respiratory activity of adhering cells. Talanta 81(1–2):228–234

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Shi Y, Ding S (2008) A chemical approach to stem-cell biology and regenerative medicine. Nature 453(7193):338–344

    Article  CAS  PubMed  Google Scholar 

  • Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 103(18):6907–6912

    Article  CAS  PubMed  Google Scholar 

  • Yim EKF, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313(9):1820–1829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blake W. Axelrod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Axelrod, B.W., Wion, D. (2012). Stem Cell Culture: Optimizing Amidst the Complexity. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 8. Stem Cells and Cancer Stem Cells, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4798-2_1

Download citation

Publish with us

Policies and ethics