Skip to main content

High Throughput Affinity Purification and Mass Spectrometry to Determine Protein Complex Interactions

  • Chapter
  • First Online:
New Frontiers of Network Analysis in Systems Biology
  • 1207 Accesses

Abstract

Affinity purification, or immunoprecipitation, followed by mass spectrometry (AP/MS or IP/MS, respectively) is a proper and powerful method to analyze protein complexes. Technological capabilities of mass spectrometry instrumentation have dramatically improved over the last decade, and now allow routine detection of high- and low-abundance components in composite protein mixtures, expanding our ability to use co-immunoprecipitation to study cellular regulatory protein interaction networks. In this review, we summarize several key efforts and accomplishments in applying mass spectrometry towards mapping of a proteome-wide interactome. Emerging high-throughput studies begin to etch a ‘systems biology’ view of protein-protein interactions, where modularity and interconnectivity of cellular protein machinery are unequivocally revealed. Yet, major challenges still remain in the application of high-throughput (HT) affinity purification for studies in higher organisms, particularly in human cells, and in addressing persistent issues associated with analysis, interpretation, and dissemination of massive IP/MS data. We describe some of the conceptual and practical challenges of the HT-IP/MS approach, and discuss feasible solutions in context of the protein complexes involved in transcriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294

    Article  PubMed  CAS  Google Scholar 

  2. Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, Derow C, Feuermann M, Ghanbarian AT, Kerrien S, Khadake J et al (2010) The IntAct molecular interaction database in 2010. Nucleic Acids Res 38:D525–D531

    Article  PubMed  CAS  Google Scholar 

  3. Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 1:2

    Article  PubMed  Google Scholar 

  4. Bader GD, Hogue CW (2002) Analyzing yeast protein-protein interaction data obtained from different sources. Nat Biotechnol 20:991–997

    Article  PubMed  CAS  Google Scholar 

  5. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905

    Article  PubMed  CAS  Google Scholar 

  6. Bloom LB (2009) Loading clamps for DNA replication and repair. DNA Repair (Amst) 8:570–578

    Article  CAS  Google Scholar 

  7. Bourbon HM (2008) Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res 36:3993–4008

    Article  PubMed  CAS  Google Scholar 

  8. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S et al (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6:97–105

    Article  PubMed  CAS  Google Scholar 

  9. Bowen NJ, Fujita N, Kajita M, Wade PA (2004) Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta 1677:52–57

    Article  PubMed  CAS  Google Scholar 

  10. Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin ZY, Breitkreutz BJ, Stark C, Liu G et al (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328:1043–1046

    Article  PubMed  CAS  Google Scholar 

  11. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bahler J, Wood V et al (2008) The BioGRID interaction database: 2008 update. Nucleic Acids Res 36:D637–D640

    Article  PubMed  CAS  Google Scholar 

  12. Cai G, Imasaki T, Takagi Y, Asturias FJ (2009) Mediator structural conservation and implications for the regulation mechanism. Structure 17:559–567

    Article  PubMed  CAS  Google Scholar 

  13. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC (2010) Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem 285:4268–4272

    Article  PubMed  CAS  Google Scholar 

  14. Ceol A, Chatr Aryamontri A, Licata L, Peluso D, Briganti L, Perfetto L, Castagnoli L, Cesareni G (2010) MINT, the molecular interaction database: 2009 update. Nucleic Acids Res 38:D532–D539

    Article  PubMed  CAS  Google Scholar 

  15. Choi H, Kim S, Gingras AC, Nesvizhskii AI (2010) Analysis of protein complexes through model-based biclustering of label-free quantitative AP-MS data. Mol Syst Biol 6:385

    Article  PubMed  Google Scholar 

  16. Cristea IM, Williams R, Chait BT, Rout MP (2005) Fluorescent proteins as proteomic probes. Mol Cell Proteomics 4:1933–1941

    Article  PubMed  CAS  Google Scholar 

  17. De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6:e1000807

    Article  PubMed  Google Scholar 

  18. Dotson MR, Yuan CX, Roeder RG, Myers LC, Gustafsson CM, Jiang YW, Li Y, Kornberg RD, Asturias FJ (2000) Structural organization of yeast and mammalian mediator complexes. Proc Natl Acad Sci USA 97:14307–14310

    Article  PubMed  CAS  Google Scholar 

  19. Drakas R, Prisco M, Baserga R (2005) A modified tandem affinity purification tag technique for the purification of protein complexes in mammalian cells. Proteomics 5:132–137

    Article  PubMed  CAS  Google Scholar 

  20. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M et al (2007) Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 3:89

    Article  PubMed  Google Scholar 

  21. Feng Q, Zhang Y (2003) The NuRD complex: linking histone modification to nucleosome remodeling. Curr Top Microbiol Immunol 274:269–290

    Article  PubMed  CAS  Google Scholar 

  22. Fleischer TC, Yun UJ, Ayer DE (2003) Identification and characterization of three new components of the mSin3A corepressor complex. Mol Cell Biol 23:3456–3467

    Article  PubMed  CAS  Google Scholar 

  23. Forler D, Kocher T, Rode M, Gentzel M, Izaurralde E, Wilm M (2003) An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat Biotechnol 21:89–92

    Article  PubMed  CAS  Google Scholar 

  24. Friedel CC, Zimmer R (2009) Identifying the topology of protein complexes from affinity purification assays. Bioinformatics 25:2140–2146

    Article  PubMed  CAS  Google Scholar 

  25. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  PubMed  CAS  Google Scholar 

  26. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158

    Article  PubMed  CAS  Google Scholar 

  27. Gu W, Malik S, Ito M, Yuan CX, Fondell JD, Zhang X, Martinez E, Qin J, Roeder RG (1999) A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol Cell 3:97–108

    Article  PubMed  CAS  Google Scholar 

  28. Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R (2000) A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 14:1048–1057

    PubMed  CAS  Google Scholar 

  29. Guglielmi B, van Berkum NL, Klapholz B, Bijma T, Boube M, Boschiero C, Bourbon HM, Holstege FC, Werner M (2004) A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res 32:5379–5391

    Article  PubMed  CAS  Google Scholar 

  30. Haber DA, Settleman J (2007) Cancer: drivers and passengers. Nature 446:145–146

    Article  PubMed  CAS  Google Scholar 

  31. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93

    Article  PubMed  CAS  Google Scholar 

  32. Hart GT, Lee I, Marcotte ER (2007) A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics 8:236

    Article  PubMed  Google Scholar 

  33. Isserlin R, El-Badrawi RA, Bader GD (2011) The biomolecular interaction network database in PSI-MI 2.5. Database (Oxford) 2011:baq037

    Google Scholar 

  34. Junttila MR, Saarinen S, Schmidt T, Kast J, Westermarck J (2005) Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics 5:1199–1203

    Article  PubMed  CAS  Google Scholar 

  35. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A et al (2009) Human protein reference database–2009 update. Nucleic Acids Res 37:D767–D772

    Article  PubMed  CAS  Google Scholar 

  36. Kocher T, Superti-Furga G (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat Methods 4:807–815

    Article  PubMed  Google Scholar 

  37. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  PubMed  CAS  Google Scholar 

  38. Lanz RB, Bulynko Y, Malovannaya A, Labhart P, Wang L, Li W, Qin J, Harper M, O’Malley BW (2010) Global characterization of transcriptional impact of the SRC-3 coregulator. Mol Endocrinol 24:859–872

    Article  PubMed  CAS  Google Scholar 

  39. Le Guezennec X, Vermeulen M, Brinkman AB, Hoeijmakers WA, Cohen A, Lasonder E, Stunnenberg HG (2006) MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol Cell Biol 26:843–851

    Article  PubMed  Google Scholar 

  40. Li Y, Bjorklund S, Jiang YW, Kim YJ, Lane WS, Stillman DJ, Kornberg RD (1995) Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proc Natl Acad Sci USA 92:10864–10868

    Article  PubMed  CAS  Google Scholar 

  41. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132:958–970

    Article  PubMed  CAS  Google Scholar 

  42. Majka J, Burgers PM (2004) The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 78:227–260

    Article  PubMed  CAS  Google Scholar 

  43. Malovannaya A, Lanz RB, Jung SY, Bulynko Y, Le NT, Chan DW, Ding C, Shi Y, Yucer N, Krenciute G, Kim BJ, Li C, Chen R, Li W, Wang Y, O’Malley BW, Qin J (2011) Analysis of the human endogenous coregulator complexome. Cell 145(5):787–799

    Google Scholar 

  44. Malovannaya A, Li Y, Bulynko Y, Jung SY, Wang Y, Lanz RB, O’Malley BW, Qin J (2010) Streamlined analysis schema for high-throughput identification of endogenous protein complexes. Proc Natl Acad Sci USA 107:2431–2436

    Article  PubMed  CAS  Google Scholar 

  45. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166

    Article  PubMed  CAS  Google Scholar 

  46. Morell M, Espargaro A, Aviles FX, Ventura S (2008) Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Nat Protoc 3:22–33

    Article  PubMed  CAS  Google Scholar 

  47. Mu JJ, Wang Y, Luo H, Leng M, Zhang J, Yang T, Besusso D, Jung SY, Qin J (2007) A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J Biol Chem 282:17330–17334

    Article  PubMed  CAS  Google Scholar 

  48. Nesvizhskii AI (2010) A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics 73:2092–2123

    Article  PubMed  CAS  Google Scholar 

  49. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  PubMed  CAS  Google Scholar 

  50. Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stumpflen V, Mewes HW et al (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21:832–834

    Article  PubMed  CAS  Google Scholar 

  51. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, Conaway JW, Florens L, Washburn MP (2006) Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci USA 103:18928–18933

    Article  PubMed  CAS  Google Scholar 

  52. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  PubMed  CAS  Google Scholar 

  53. Poser I, Sarov M, Hutchins JR, Heriche JK, Toyoda Y, Pozniakovsky A, Weigl D, Nitzsche A, Hegemann B, Bird AW et al (2008) BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 5:409–415

    Article  PubMed  CAS  Google Scholar 

  54. Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33:349–355

    Article  PubMed  CAS  Google Scholar 

  55. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, Akalin A, Schmeier S, Kanamori-Katayama M, Bertin N et al (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140:744–752

    Article  PubMed  CAS  Google Scholar 

  56. Rinner O, Mueller LN, Hubalek M, Muller M, Gstaiger M, Aebersold R (2007) An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat Biotechnol 25:345–352

    Article  PubMed  CAS  Google Scholar 

  57. Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Mewes HW (2010) CORUM: the comprehensive resource of mammalian protein complexes–2009. Nucleic Acids Res 38:D497–D501

    Article  PubMed  CAS  Google Scholar 

  58. Ruffner H, Bauer A, Bouwmeester T (2007) Human protein-protein interaction networks and the value for drug discovery. Drug Discov Today 12:709–716

    Article  PubMed  CAS  Google Scholar 

  59. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451

    Article  PubMed  CAS  Google Scholar 

  60. Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS (2010) A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 10:59–64

    Article  PubMed  CAS  Google Scholar 

  61. Sardiu ME, Cai Y, Jin J, Swanson SK, Conaway RC, Conaway JW, Florens L, Washburn MP (2008) Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc Natl Acad Sci USA 105:1454–1459

    Article  PubMed  CAS  Google Scholar 

  62. Sardiu ME, Florens L, Washburn MP (2009) Evaluation of clustering algorithms for protein complex and protein interaction network assembly. J Proteome Res 8:2944–2952

    Article  PubMed  CAS  Google Scholar 

  63. Scholtens D, Vidal M, Gentleman R (2005) Local modeling of global interactome networks. Bioinformatics 21:3548–3557

    Article  PubMed  CAS  Google Scholar 

  64. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  Google Scholar 

  65. Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389–403

    Article  PubMed  CAS  Google Scholar 

  66. Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5:699–711

    Article  PubMed  CAS  Google Scholar 

  67. Taatjes DJ, Naar AM, Andel F 3rd, Nogales E, Tjian R (2002) Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295:1058–1062

    Article  PubMed  CAS  Google Scholar 

  68. Tackett AJ, DeGrasse JA, Sekedat MD, Oeffinger M, Rout MP, Chait BT (2005) I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J Proteome Res 4:1752–1756

    Article  PubMed  CAS  Google Scholar 

  69. Varghese JS, Easton DF (2010) Genome-wide association studies in common cancers–what have we learnt? Curr Opin Genet Dev 20:201–209

    Article  PubMed  CAS  Google Scholar 

  70. Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh KI et al (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90

    Article  PubMed  CAS  Google Scholar 

  71. Wang W, Cote J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M et al (1996) Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J 15:5370–5382

    PubMed  CAS  Google Scholar 

  72. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939

    PubMed  CAS  Google Scholar 

  73. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, Liang J, Sun L, Yang X, Shi L et al (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138:660–672

    Article  PubMed  CAS  Google Scholar 

  74. Weake VM, Workman JL (2010) Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 11:426–437

    Article  PubMed  CAS  Google Scholar 

  75. Weston AD, Hood L (2004) Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J Proteome Res 3:179–196

    Article  PubMed  CAS  Google Scholar 

  76. Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2:851–861

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yaroslava Bulynko for critical reading of the manuscript. This work was supported by the NIH grants U19-DK62434 (including the Proteomics Strand funding to B.W.O. and J.Q. and the Collaborative Bridging Project funding to R.B.L.), NIDDK DK59820 (to B.W.O.), and NCI CA84199 (to J.Q.). We also acknowledge the support of the McLean Foundation through the Center for Molecular Discovery at Baylor College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Malovannaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Malovannaya, A., Lanz, R.B., O’Malley, B.W., Qin, J. (2012). High Throughput Affinity Purification and Mass Spectrometry to Determine Protein Complex Interactions. In: Ma'ayan, A., MacArthur, B. (eds) New Frontiers of Network Analysis in Systems Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4330-4_8

Download citation

Publish with us

Policies and ethics