Skip to main content

Cell Fate Regulatory Networks

  • Chapter
  • First Online:
New Frontiers of Network Analysis in Systems Biology

Abstract

Cell fate decisions are controlled by intrinsically complex molecular regulatory networks, involving a wide variety of protein–protein and protein-DNA interactions. Due to this complexity, it is difficult to understand molecular regulation of cell fate at the ‘systems’ level. In this chapter we discuss mathematical modeling of cell fate regulatory networks, and explain some ways in which mathematical techniques may be used to elucidate the essential molecular mechanisms that underly cell fate determination. We consider both Boolean networks and ordinary differential equation (ODE) models. We give an illustrative worked example of an ODE model of a simple irreversible molecular switch due to an self-enhancing positive feedback loop and discuss how various commonly-occurring network ‘motifs’ can give rise to certain well-defined dynamics, including switches and oscillators. We conclude with some words on the role of stochasticity in cell fate regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, from Eq. 2.4 this is always the case for m a positive integer.

  2. 2.

    Note that for γ > 1, B < 0, which physically unrealistic. However, starting from a non-negative initial condition the dynamics are confined to y ≥ 0 since the origin is a nullcline of the system. So, for biologically realistic initial conditions, negative values for the concentration are not obtained.

  3. 3.

    A dynamical system that supports more than one coexisting attractor is said to be multi-stable.

References

  1. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    Article  PubMed  CAS  Google Scholar 

  2. Bader J, Chaudhuri A, Rothberg J, Chant J (2004) Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 22(1):78–85

    Article  PubMed  CAS  Google Scholar 

  3. Becskei A, Séraphin B, Serrano L (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20(10):2528–2535

    Article  PubMed  CAS  Google Scholar 

  4. Bolouri H, Davidson E (2002) Modeling transcriptional regulatory networks. BioEssays 24(12):1118–1129

    Article  PubMed  CAS  Google Scholar 

  5. Boyer L, Lee T, Cole M, Johnstone S, Levine S, Zucker J, Guenther M, Kumar R, Murray H, Jenner R, et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956

    Article  PubMed  CAS  Google Scholar 

  6. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547

    Article  PubMed  CAS  Google Scholar 

  7. Crick F (1958) On protein synthesis. Symp Soc Exp Biol 12:138

    PubMed  CAS  Google Scholar 

  8. Davidson E (2007) Gene regulation: gene control network in development. Annu Rev Biophys Biomol Struct 36:191–212

    Article  PubMed  Google Scholar 

  9. Dougherty E, Datta A, Sima C (2005) Research issues in genomic signal processing. IEEE Signal Process Mag 22(6):46–68

    Article  Google Scholar 

  10. Elowitz M, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  PubMed  CAS  Google Scholar 

  11. Gardner T, Cantor C, Collins J (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342

    Article  PubMed  CAS  Google Scholar 

  12. Gershenson C (2004) Introduction to random boolean networks. In: Bedau M, Husbands P, Hutton T, Kumar S, Suzuki H (eds) Workshop and tutorial proceedings, ninth international conference on the simulation and synthesis of living systems (ALife IX), pp 160–173

    Google Scholar 

  13. Giot L, Bader J, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao Y, Ooi C, Godwin B, Vitols E, et al (2003) A protein interaction map of drosophila melanogaster. Science 302(5651):1727

    Article  PubMed  CAS  Google Scholar 

  14. Hasty J, McMillen D, Isaacs F, Collins J (2001) Computational studies of gene regulatory networks: in numero molecular biology. Nat Rev Genet 2(4):268–279

    Article  PubMed  CAS  Google Scholar 

  15. Heiden U (1979) Delays in physiological systems. J Math Biol 8(4):345–364

    Article  Google Scholar 

  16. Huang S, Eichler G, Bar-Yam Y, Ingber D (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94(12):128, 701

    Google Scholar 

  17. Ingram P, Stumpf M, Stark J (2006) Network motifs: structure does not determine function. BMC Genomics 7(1):108

    Article  PubMed  Google Scholar 

  18. Iranfar N, Fuller D, Loomis W (2006) Transcriptional regulation of post-aggregation genes in dictyostelium by a feed-forward loop involving gbf and lagc. Dev Biol 290(2):460–469

    Article  PubMed  CAS  Google Scholar 

  19. Kauffman S (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467

    Article  PubMed  CAS  Google Scholar 

  20. Kauffman S (1993) The origins of order, vol 209. Oxford University Press, New York

    Google Scholar 

  21. Kholodenko B (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    Article  PubMed  CAS  Google Scholar 

  22. Kramer BP, Fussenegger M (2005) Hysteresis in a synthetic mammalian gene network. Proc Natl Acad Sci USA 102(27):9517–9522

    Article  PubMed  CAS  Google Scholar 

  23. Landgraf C, Panni S, Montecchi-Palazzi L, Castagnoli L, Schneider-Mergener J, Volkmer-Engert R, Cesareni G (2004) Protein interaction networks by proteome peptide scanning. PLoS Biol 2(1):e14

    Article  PubMed  Google Scholar 

  24. Laurent M, Kellershohn N (1999) Multistability: a major means of differentiation and evolution in biological systems. Trends Biochem Sci 24(11):418–422

    Article  PubMed  CAS  Google Scholar 

  25. Levsky JM, Shenoy SM, Pezo RC, Singer RH (2002) Single-cell gene expression profiling. Science 297(5582):836–840

    Article  PubMed  CAS  Google Scholar 

  26. Liang S, Fuhrman S, Somogyi R, et al (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput 3:18–29

    Google Scholar 

  27. Lipshtat A, Loinger A, Balaban N, Biham O (2006) Genetic toggle switch without cooperative binding. Phys Rev Lett 96(18):188101

    Article  PubMed  Google Scholar 

  28. MacArthur B, Ma’ayan A, Lemischka I (2009) Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 10(10):672–681

    PubMed  CAS  Google Scholar 

  29. Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 100(21):11980

    Article  PubMed  CAS  Google Scholar 

  30. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824

    Article  PubMed  CAS  Google Scholar 

  31. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538

    Article  PubMed  CAS  Google Scholar 

  32. Monod J, Jacob F (1961) General conclusions: teleonomic mechanisms in cellular metabolism, growth, and differentiation. In: Cold spring harbor symposia on quantitative biology, vol 26. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, p 389

    Google Scholar 

  33. Niswander L, Jeffrey S, Martin G, Tickle C (1994) A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371(6498):609–612

    Article  PubMed  CAS  Google Scholar 

  34. Rinner O, Mueller L, Hubálek M, Müller M, Gstaiger M, Aebersold R (2007) An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat Biotechnol 25(3):345–352

    Article  PubMed  CAS  Google Scholar 

  35. Savageau M (1974) Comparison of classical and autogenous systems of regulation in inducible operons. Nature 252(5484):546–549

    Article  PubMed  CAS  Google Scholar 

  36. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166–176

    Article  PubMed  CAS  Google Scholar 

  37. Shen-Orr S, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68

    Article  PubMed  CAS  Google Scholar 

  38. Shmulevich I, Dougherty E, Kim S, Zhang W (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261

    Article  PubMed  CAS  Google Scholar 

  39. Somogyi R, Sniegoski C (1996) Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity 1(6):45–63

    Google Scholar 

  40. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck F, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, et al (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    Article  PubMed  CAS  Google Scholar 

  41. Süel G, Garcia-Ojalvo J, Liberman L, Elowitz M (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440:545–550

    Article  PubMed  Google Scholar 

  42. Szallasi Z, Liang S (1998) Modeling the normal and neoplastic cell cycle with realistic Boolean genetic networks: their application for understanding carcinogenesis and assessing therapeutic strategies. Pacific Symposium on Biocomputing, vol 3. Stanford University, Stanford, pp 66–76

    Google Scholar 

  43. Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. Springer Series Syne 9:180–193

    Article  Google Scholar 

  44. Tong A, Drees B, Nardelli G, Bader G, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, et al (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295(5553):321

    Article  PubMed  CAS  Google Scholar 

  45. Tyson J, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Bio 2(12):908–916

    Article  CAS  Google Scholar 

  46. Tyson J, Chen K, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231

    Article  PubMed  CAS  Google Scholar 

  47. Uetz P, Giot L, Cagney G, Mansfield T, Judson R, Knight J, Lockshon D, Narayan V, Srinivasan M, Pochart P, et al (2000) A comprehensive analysis of protein–protein interactions in saccharomyces cerevisiae. Nature 403(6770):623–627

    Article  PubMed  CAS  Google Scholar 

  48. Waddington C (1957) The strategy of the genes: a discussion of some aspects of theoretical biology. Allen & Unwin, London

    Google Scholar 

  49. Wang J, Zhang K, Xu L, Wang E (2011) Quantifying the waddington landscape and biological paths for development and differentiation. Proc Natl Acad Sci USA 108:8257–8262

    Article  PubMed  CAS  Google Scholar 

  50. Watson J, Crick F (1953) Molecular structure of nucleic acids. Nature 171(4356):737–738

    Article  PubMed  CAS  Google Scholar 

  51. Xiong W, Ferrell J (2003) A positive-feedback-based bistable memory modulethat governs a cell fate decision. Nature 426(6965):460–465

    Article  PubMed  CAS  Google Scholar 

  52. Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Radomska H, Auron P, Tenen D, Sun Z (1999) Negative cross-talk between hematopoietic regulators: GATA proteins repress PU. 1. Proc Natl Acad Sci USA 96(15):8705

    Google Scholar 

Download references

Acknowledgements

This work was supported by an EPSRC Doctoral Training Centre grant (EP/G03690X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben D. MacArthur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ridden, S.J., MacArthur, B.D. (2012). Cell Fate Regulatory Networks. In: Ma'ayan, A., MacArthur, B. (eds) New Frontiers of Network Analysis in Systems Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4330-4_2

Download citation

Publish with us

Policies and ethics