Skip to main content

Thoughts on Quorum Sensing and Fungal Dimorphism

  • Chapter
  • First Online:
Biocommunication of Fungi

Abstract

Farnesol has been best studied for its role in regulating fungal dimorphism. However, farnesol is also a lipid and in this review we analyze data relevant to farnesol’s function and synthesis from the perspective of farnesol and bacterial endotoxins acting as membrane active compounds. This analysis implicates the possible roles of: (1) endotoxins in the regulation of farnesol production by C. albicans; (2) farnesol in the interactions between C. albicans and the host during disseminated infections; and (3) ubiquinones in the mechanisms for unusually high resistance to farnesol by some C. albicans cell types. Finally we discuss the implications that the use of farnesol as both a signaling molecule and to antagonize competing microbials species has for the regulation of HMG-CoA reductase, the enzyme that is the usual rate limiting step in sterol/lipid synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe S, Tsunashima R, Iijima R, Yamada T, Maruyama N et al (2009) Suppression of anti-Candida activity of macrophages by a quorum-sensing molecule, farnesol, through induction of oxidative stress. Microbiol Immunol 53(6):323–330

    Article  PubMed  CAS  Google Scholar 

  • Burg JS, Espenshade PJ (2011) Regulation of HMG-CoA reductase in mammals and yeast. Prog Lipid Res 50(4):403–410

    Article  PubMed  CAS  Google Scholar 

  • Burg JS, Powell DW, Chai R, Hughes AL, Link AJ et al (2008) Insig regulates HMG-CoA reductase by controlling enzyme phosphorylation in fission yeast. Cell Metab 8(6):522–531

    Article  PubMed  CAS  Google Scholar 

  • Dimster-Denk D, Thorsness MK, Rine J (1994) Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae. Mol Biol Cell 5(6):655–665

    PubMed  CAS  Google Scholar 

  • Dumitru R, Hornby JM, Nickerson KW (2004) Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother 48(7):2350–2354

    Article  PubMed  CAS  Google Scholar 

  • Dumitru R, Navarathna DH, Semighini CP, Elowsky CG, Dumitru RV et al (2007) In vivo and in vitro anaerobic mating in Candida albicans. Eukaryot Cell 6(3):465–472

    Article  PubMed  CAS  Google Scholar 

  • Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci USA 91(5):1863–1867

    Article  PubMed  CAS  Google Scholar 

  • Fairn GD, Macdonald K, McMaster CR (2007) A chemogenomic screen in Saccharomyces cerevisiae uncovers a primary role for the mitochondria in farnesol toxicity and its regulation by the Pkc1 pathway. J Biol Chem 282(7):4868–4874

    Article  PubMed  CAS  Google Scholar 

  • Flannagan RS, Cosio G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7(5):355–366

    Article  PubMed  CAS  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269–275

    PubMed  CAS  Google Scholar 

  • Garza RM, Tran PN, Hampton RY (2009) Geranylgeranyl pyrophosphate is a potent regulator of HRD-dependent 3-hydroxy-3-methylglutrayl-CoA reductase degradtion in yeast. J Biol Chem 28(51):35368–35380

    Article  Google Scholar 

  • Geiger J, Wessels D, Lockhart SR, Soll DR (2004) Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infect Immun 72(2):667–677

    Article  PubMed  CAS  Google Scholar 

  • Ghannoum MA, Swairjo I, Soll DR (1990) Variation in lipid and sterol contents in Candida albicans white and opaque phenotypes. J Med Vet Mycol 28(2):103–115

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Navarathna DH, Roberts DD, Cooper JT, Atkin AL et al (2009) Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infect Immun 77(4):1596–1605

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Howe N, Volk K, Tati S, Nickerson KW et al (2010) Candida albicans cell wall components and farnesol stimulate the expression of both inflammatory and regulatory cytokines in the murine RAW264.7 macrophage cell line. FEMS Immunol Med Microbiol 60(1):63–73

    Article  PubMed  CAS  Google Scholar 

  • Hampton RY, Garza RM (2009) Protein quality control as a strategy for cellular regulation: lessons from ubiquitin-mediated regulation of the sterol pathway. Chem Rev 109(4):1561–1574

    Article  PubMed  CAS  Google Scholar 

  • Hisajima T, Maruyama N, Tanabe Y, Ishibashi H, Yamada T et al (2008) Protective effects of farnesol against oral candidiasis in mice. Microbiol Immunol 52(7):327–333

    Article  PubMed  CAS  Google Scholar 

  • Hogan DA, Muhlschlegel FA (2011) Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals. Curr Opin Microbiol 14(6):682–686

    Article  PubMed  CAS  Google Scholar 

  • Hornby JM, Nickerson KW (2004) Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob Agents Chemother 48(6):2305–2307

    Article  PubMed  CAS  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B et al (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67(7):2982–2992

    Article  PubMed  CAS  Google Scholar 

  • Hornby JM, Kebaara BW, Nickerson KW (2003) Farnesol biosynthesis in Candida albicans cellular response to sterol inhibition by zaragozic acid B. Antimicrob Agents Chemother 47:2366–2369

    Article  PubMed  CAS  Google Scholar 

  • Jillson OF, Nickerson WJ (1948) Mutual antagonism between pathogenic fungi; inhibition of dimorphism in Candida albicans. Mycologia 40(3):369–385

    Article  PubMed  CAS  Google Scholar 

  • Joo JH, Jetten AM (2010) Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett 287(2):123–135

    Article  PubMed  CAS  Google Scholar 

  • Kolotila MP, Diamond RD (1990) Effects of neutrophils and in vitro oxidants on survival and phenotypic switching of Candida albicans WO-1. Infect Immun 58(5):1174–1179

    PubMed  CAS  Google Scholar 

  • Lachke SA, Lockhart SR, Daniels KJ, Soll DR (2003) Skin facilitates Candida albicans mating. Infect Immun 71(9):4970–4976

    Article  PubMed  CAS  Google Scholar 

  • Langford ML, Atkin AL, Nickerson KW (2009) Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. Future Microbiol 4(10):1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Langford ML, Hasim S, Nickerson KW, Atkin AL (2010) Activity and toxicity of farnesol towards Candida albicans are dependent on growth conditions. Antimicrob Agents Chemother 54(2):940–942

    Article  PubMed  CAS  Google Scholar 

  • Lohse MB, Johnson AD (2008) Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes. PLoS One 3(1):e1473

    Article  PubMed  Google Scholar 

  • Machida K, Tanaka T, Fujita K, Taniguchi M (1998) Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae. J Bacteriol 180(17):4460–4465

    PubMed  CAS  Google Scholar 

  • McCoy JW (1980) Microbiology of cooling water. Chemical Publishing Co., New York

    Google Scholar 

  • Navarathna DH, Hornby JM, Krishnan N, Parkhurst A, Duhamel GE et al (2007) Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect Immun 75(4):1609–1618

    Article  PubMed  CAS  Google Scholar 

  • Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 72(6):3805–3813

    Article  PubMed  CAS  Google Scholar 

  • Nigam S, Ciccoli R, Ivanov I, Sczepanski M, Deva R (2010) On mechanism of quorum sensing in Candida albicans by 3(R)-hydroxy-tetradecaenoic acid. Curr Microbiol 62(1):55–63

    Article  PubMed  Google Scholar 

  • Okada K, Kainou T, Matsuda H, Kawamukai M (1998) Biological significance of the side chain length of ubiquinone in Saccharomyces cerevisiae. FEBS Lett 431(2):241–244

    Article  PubMed  CAS  Google Scholar 

  • Okafor N (2007) Modern industrial microbiology and biotechnology. Science Publishers, Enfield, 530 p

    Google Scholar 

  • Olgun A, Akman S, Tezcan S, Kutluay T (2003) The effect of isoprenoid side chain length of ubiquinone on life span. Med Hypotheses 60(3):325–327

    Article  PubMed  CAS  Google Scholar 

  • Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD (2006) Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol 59(3):753–764

    Article  PubMed  CAS  Google Scholar 

  • Shchepin R, Hornby JM, Burger E, Niessen T, Dussault P et al (2003) Quorum sensing in Candida albicans: probing farnesol’s mode of action with 40 natural and synthetic farnesol analogs. Chem Biol 10(8):743–750

    Article  PubMed  CAS  Google Scholar 

  • Shchepin R, Dumitru R, Nickerson KW, Lund M, Dussault PH (2005) Biologically active fluorescent farnesol analogs. Chem Biol 12(6):639–641

    Article  PubMed  CAS  Google Scholar 

  • Shearer AG, Hampton RY (2005) Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. EMBO J 24(1):149–159

    Article  PubMed  CAS  Google Scholar 

  • Shinkarev VP (2006) Ubiquinone (coenzyme Q10) binding sites: low dielectric constant of the gate prevents the escape of the semiquinone. FEBS Lett 580(11):2534–2539

    Article  PubMed  CAS  Google Scholar 

  • Sobel JD (1997) Vaginitis. N Engl J Med 337(26):1896–1903

    Article  PubMed  CAS  Google Scholar 

  • Soll DR, Bedell GW, Brummel M (1981) Zinc and regulation of growth and phenotype in the infectious yeast Candida albicans. Infect Immun 32(3):1139–1147

    PubMed  CAS  Google Scholar 

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43(2):159–271

    Article  PubMed  CAS  Google Scholar 

  • Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9(10):737–748

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Nakase T (2002) A phylogenetic study of ubiquinone-7 species of the genus Candida based on 18S ribosomal DNA sequence divergence. J Gen Appl Microbiol 48(1):55–65

    Article  PubMed  CAS  Google Scholar 

  • Theesfeld CL, Pourmand D, Davis T, Garza RM, Hampton RY (2011) The sterol-sensing domain (SSD) directly mediates signal-regulated endoplasmic reticulum-associated degradation (ERAD) of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase isozyme Hmg2. J Biol Chem 286(30):26298–26307

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Quinn PJ (2010) Endotoxins: structure, function and recognition. Springer, New York

    Book  Google Scholar 

  • Yamaguchi H (1975) Control of dimorphism in Candida albicans by zinc: effect on cell morphology and composition. J Gen Microbiol 86(2):370–372

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth W. Nickerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nickerson, K.W., Atkin, A.L., Hargarten, J.C., Pathirana, R., Hasim, S. (2012). Thoughts on Quorum Sensing and Fungal Dimorphism. In: Witzany, G. (eds) Biocommunication of Fungi. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4264-2_12

Download citation

Publish with us

Policies and ethics