Skip to main content

Growth Mixture Modelling for Life Course Epidemiology

  • Chapter
  • First Online:
Modern Methods for Epidemiology

Abstract

Life course epidemiology is the study of how physical and social exposures occurring across the entire life course, or even inter-generationally, can impact chronic disease risk later in life (Ben-Shlomo and Kuh 2002). The life course approach to chronic disease epidemiology is not a new one, though it was overshadowed during much of the twentieth century by research on the importance of adulthood lifestyle risk factors such as smoking and diet (Kuh and Ben-Shlomo 2004). Recently, however, the life course approach to epidemiology has been given more attention by researchers, funding agencies, and policy makers (Ben-Shlomo and Kuh 2002; De Stavola et al. 2006; Kuh and Ben-Shlomo 2004; Kuh et al. 2003; Pickles et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair, L. S., Martorell, R., Stein, A. D., Hallal, P. C., Sachdev, H. S., Prabhakaran, D., Wills, A. K., Norris, S. A., Dahly, D. L., & Lee, N. R. (2009). Size at birth, weight gain in infancy and childhood, and adult blood pressure in 5 low-and middle-income-country cohorts: When does weight gain matter? American Journal of Clinical Nutrition, 89, 1383.

    Article  PubMed  CAS  Google Scholar 

  • Adair, L. S., Popkin, B. M., Akin, J. S., Guilkey, D. K., Gultiano, S., Borja, J., Perez, L., Kuzawa, C. W., McDade, T., & Hindin, M. J. (2010). Cohort profile: The Cebu longitudinal health and nutrition survey. International Journal of Epidemiology. doi:10.1093/ije/ dyq085.

    Google Scholar 

  • Baird, J., Fisher, D., Lucas, P., Kleijnen, J., Roberts, H., & Law, C. (2005). Being big or growing fast: Systematic review of size and growth in infancy and later obesity. British Medical Journal, 331, 929.

    Article  PubMed  Google Scholar 

  • Barker, D. J. P. (2001). Fetal origins of cardiovascular and lung disease. New York: M. Dekker.

    Google Scholar 

  • Barker, D. J. P. (2004). The developmental origins of adult disease. Journal of the American College of Nutrition, 23, 588–595.

    Google Scholar 

  • Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338.

    Article  PubMed  Google Scholar 

  • Ben-Shlomo, Y., & Kuh, D. (2002). A life course approach to chronic disease epidemiology: Conceptual models, empirical challenges and interdisciplinary perspectives. London: IEA. Int. J. Epidemiol. (2002) 31 (2): 285–293. doi: 10.1093/ije/31.2.285.

    Google Scholar 

  • Ben-Shlomo, Y., McCarthy, A., Hughes, R., Tilling, K., Davies, D., & Davey Smith, G. (2008). Immediate postnatal growth is associated with blood pressure in young adulthood: The Barry Caerphilly Growth Study. Hypertension, 52, 638.

    Article  PubMed  CAS  Google Scholar 

  • Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken: Wiley-Interscience. http://onlinelibrary.wiley.com/doi/10.1002/0471746096.fmatter/pdf.

    Google Scholar 

  • Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195–212.

    Article  Google Scholar 

  • Cole, T. J., Bellizzi, M. C., Flegal, K. M., & Dietz, W. H. (2000). Establishing a standard definition for child overweight and obesity worldwide: International survey. British Medical Journal, 320, 1240.

    Article  PubMed  CAS  Google Scholar 

  • De Stavola, BL and Nitsch, D and Silva, ID and McCormack, V and Hardy, R and Mann, V and Cole, TJ and Morton, S and Leon, DA (2006) Statistical issues in life course epidemiology. AM J EPIDEMIOL, 163(1) 84–96. Chap. 10.1093/aje/kwj003.

    Google Scholar 

  • Dolan, C. V., Schmittmann, V. D., Lubke, G. H., & Neale, M. C. (2005). Regime switching in the latent growth curve mixture model. Structural Equation Modeling, 12, 94–119.

    Article  Google Scholar 

  • Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C., & Barker, D. J. P. (2001). Early growth and coronary heart disease in later life: Longitudinal study. British Medical Journal, 322, 949.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson, J. G., Forsen, T. J., Osmond, C., & Barker, D. J. P. (2003). Pathways of infant and childhood growth that lead to type 2 diabetes. Diabetes Care, 26, 3006.

    Article  PubMed  Google Scholar 

  • Gale, C. R., O’Callaghan, F. J., Bredow, M., & Martyn, C. N. (2006). The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics, 118, 1486.

    Article  PubMed  Google Scholar 

  • Garrett, E. S., & Zeger, S. L. (2000). Latent class model diagnosis. Biometrics, 56, 1055–1067.

    Article  PubMed  CAS  Google Scholar 

  • Gillman, M. W. (2005). Developmental origins of health and disease. The New England Journal of Medicine, 353, 1848–1850.

    Article  PubMed  CAS  Google Scholar 

  • Gluckman, P. D., & Hanson, M. A. (2004). Developmental origins of disease paradigm: A mechanistic and evolutionary perspective. Pediatric Research, 56, 311–317.

    Article  PubMed  Google Scholar 

  • Hall, D. M. B., & Cole, T. J. (2006). What use is the BMI? Archives of Disease in Childhood, 91, 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Healy, M. J. R. (1974). Notes on the statistics of growth standards. Annals of Human Biology, 1, 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Hermanussen, M., & Meigen, C. (2007). Phase variation in child and adolescent growth. International Journal of Biostatistics, 3, 9.

    Google Scholar 

  • Jackson, D. A. (1993). Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology, 74, 2204–2214.

    Article  Google Scholar 

  • Jones, B. L., Nagin, D. S., & Roeder, K. (2001). A SAS procedure based on mixture models for estimating developmental trajectories. Sociological Methods & Research, 29, 374.

    Article  Google Scholar 

  • Jung, T., & Wickrama, K. A. S. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 2, 302–317.

    Article  Google Scholar 

  • Keijzer-Veen, M. G., Euser, A. M., van Montfoort, N., Dekker, F. W., Vandenbroucke, J. P., & van Houwelingen, H. C. (2005). A regression model with unexplained residuals was preferred in the analysis of the fetal origins of adult diseases hypothesis. Journal of Clinical Epidemiology, 58, 1320–1324.

    Article  PubMed  Google Scholar 

  • Kreuter, F., & Muthén, B. (2008). Analyzing criminal trajectory profiles: Bridging multilevel and group-based approaches using growth mixture modeling. Journal of Quantitative Criminology, 24, 1–31.

    Article  Google Scholar 

  • Kuh, D., & Ben-Shlomo, Y. (2004). A life course approach to chronic disease epidemiology. Oxford: Oxford University Press. http://books.google.co.uk/books?id=o_CFOTYglHsC%26printsec=frontcover%26source=gbs_ge_summary_r%26cad=0#v=onepage%26q%26f=false.

    Book  Google Scholar 

  • Kuh, D., Ben-Shlomo, Y., Lynch, J., Hallqvist, J., & Power, C. (2003). Life course epidemiology. Journal of Epidemiology and Community Health, 57, 778–783.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., Duncan, T. E., Duncan, S. C., & Acock, A. (2001). Latent growth modeling of longitudinal data: A finite growth mixture modeling approach. Structural Equation Modeling: A Multidisciplinary Journal, 8, 493–530.

    Article  Google Scholar 

  • Li, C., Goran, M. I., Kaur, H., Nollen, N., & Ahluwalia, J. S. (2007). Developmental trajectories of overweight during childhood: Role of early life factors. Obesity, 15, 760–771.

    Article  PubMed  Google Scholar 

  • Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767.

    Article  Google Scholar 

  • Lohman, T., Roche, A., & Martorell, R. (1988). Anthropometric standardization reference manual. Champaign: Human Kinetics Books.

    Google Scholar 

  • McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley-Interscience. http://espace.library.uq.edu.au/view/UQ:145685.

    Book  Google Scholar 

  • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122.

    Article  Google Scholar 

  • Monteiro, P. O. A., & Victora, C. G. (2005). Rapid growth in infancy and childhood and obesity in later life-a systematic review. Obesity Reviews, 6, 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Muthén, B. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class/latent growth modeling. New methods for the analysis of change (pp. 291–322).

    Google Scholar 

  • Muthén, B., & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism, Clinical and Experimental Research, 24, 882.

    Article  PubMed  Google Scholar 

  • Nagin, D. S. (1999). Analyzing developmental trajectories: A semiparametric, group-based approach. Psychological Methods, 4, 139.

    Article  Google Scholar 

  • Nylund, K. L., Asparouhov, T., & Muthen, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569.

    Article  Google Scholar 

  • Ong, K. K., & Loos, R. J. F. (2006). Rapid infancy weight gain and subsequent obesity: Systematic reviews and hopeful suggestions. Acta Paediatrica, 95, 904–908.

    Article  PubMed  Google Scholar 

  • Østbye, T., Malhotra, R., & Landerman, L. R. (2011). Body mass trajectories through adulthood: Results from the National Longitudinal Survey of Youth 1979 Cohort (1981–2006). International Journal of Epidemiology, 40, 240.

    Article  PubMed  Google Scholar 

  • Pickles, A., & Croudace, T. (2010). Latent mixture models for multivariate and longitudinal outcomes. Statistical Methods in Medical Research, 19, 271.

    Article  PubMed  Google Scholar 

  • Pickles, A., Maughan, B., & Wadsworth, M. (2007). Epidemiological methods in life course research. Oxford: Oxford University Press. http://books.google.co.uk/books?id=GfUeCFLDMdYC%26printsec=frontcover%26source=gbs_ge_summary_r%26cad=0#v=onepage%26q%26f=false.

    Book  Google Scholar 

  • Stein, A. D., Thompson, A. M., & Waters, A. (2005). Childhood growth and chronic disease: Evidence from countries undergoing the nutrition transition. Journal compilation, 1, 177–184.

    Google Scholar 

  • Stettler, N. (2007). Nature and strength of epidemiological evidence for origins of childhood and adulthood obesity in the first year of life. International Journal of Obesity, 31, 1035–1043.

    Article  PubMed  CAS  Google Scholar 

  • Tu, Y. K., Woolston, A., Baxter, P. D., & Gilthorpe, M. S. (2010). Assessing the impact of body size in childhood and adolescence on blood pressure: An application of partial least squares regression. Epidemiology, 21, 440.

    Article  PubMed  Google Scholar 

  • Victora, C. G., & Barros, F. C. (2001). Commentary: The catch-up dilemma-relevance of Leitch’s ‘low-high’ pig to child growth in developing countries. London: IEA. Int. J. Epidemiol. (2001)30(2): 217–220. doi: 10.1093/ije/30.2.217.

    Google Scholar 

  • Victora, C. G., Adair, L., Fall, C., Hallal, P. C., Martorell, R., Richter, L., & Sachdev, H. S. (2008). Maternal and child undernutrition: Consequences for adult health and human capital. The Lancet, 371, 340–357.

    Article  CAS  Google Scholar 

  • Vyas, S., & Kumaranayake, L. (2006). Constructing socio-economic status indices: How to use principal components analysis. Health Policy and Planning, 21, 459.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren L. Dahly .

Editor information

Editors and Affiliations

Appendices

Appendix 1

13.1.1 : Latent Growth Curve Model for Mplus

! Factor loadings defining the growth curve

i1 s1 | bmi0@0 bmi2@1 bmi4* bmi6* bmi8* bmi10* bmi12* bmi14* bmi16* bmi18* bmi20* bmi22* bmi24*;

! Freely estimated factor variances, means, and covariance

i1*;

s1*;

[i1*];

[s1*];

i1 WITH s1*;

! Freely estimated error variances

bmi0*;

bmi2*;

bmi4*;

bmi6*;

bmi8*;

bmi10*;

bmi12*;

bmi14*;

bmi16*;

bmi18*;

bmi20*;

bmi22*;

bmi24*;

Appendix 2

13.2.1 : 2-Class Latent Class Growth Analysis for Mplus

Variable:

Classes = c (2); ! Increase this for more classes

Analysis:

Type = Mixture ;

STARTS = 100 20;

STITERATIONS = 20;

Model:

%OVERALL%

! Factor loadings defining the growth curve

i1 s1 | bmi0@0 bmi2@1 bmi4* bmi6* bmi8* bmi10* bmi12* bmi14* bmi16* bmi18* bmi20* bmi22* bmi24*;

! Freely estimated factor means; variances constrained as zero

i1@0;

s1@0;

[i1*];

[s1*];

! Freely estimated error variances

bmi0*;

bmi2*;

bmi4*;

bmi6*;

bmi8*;

bmi10*;

bmi12*;

bmi14*;

bmi16*;

bmi18*;

bmi20*;

bmi22*;

bmi24*;

%c#1%

[Repeat code from OVERALL model]

%c#2%

[Repeat code from OVERALL model]

! Add more class models as needed

Appendix 3

13.3.1 : 6-Class Latent Class Growth Analysis with Covariates for Mplus

Variable:

Classes = c (2);

Analysis:

Type = Mixture ;

STARTS = 100 20;

STITERATIONS = 20;

Model:

! Factor loadings defining the growth curve

i1 s1 | bmi0@0 bmi2@1 bmi4* bmi6* bmi8* bmi10* bmi12* bmi14* bmi16* bmi18* bmi20* bmi22* bmi24*;

! Freely estimated factor means; variances constrained as zero

i1@0;

s1@0;

[i1*];

[s1*];

! Freely estimated error variances

bmi0*;

bmi2*;

bmi4*;

bmi6*;

bmi8*;

bmi10*;

bmi12*;

bmi14*;

bmi16*;

bmi18*;

bmi20*;

bmi22*;

bmi24*;

! Covariates

! Multinomial logit of C on SES

c ON ses0;

! Linear regression of SES in young adulthood on SES at birth

ses258 ON ses0;

! Linear regression of systolic blood pressure on SES and waist circumference

sys258 ON waist258 ses258;

! Linear regression of waist circumference on SES

waist258 ON ses258;

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dahly, D.L. (2012). Growth Mixture Modelling for Life Course Epidemiology. In: Tu, YK., Greenwood, D. (eds) Modern Methods for Epidemiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3024-3_13

Download citation

Publish with us

Policies and ethics