Skip to main content

The Role of Adult Bone Marrow Derived Mesenchymal Stem Cells, Growth Factors and Scaffolds in the Repair of Cartilage and Bone

  • Chapter
  • First Online:
Stem Cells and Human Diseases

Abstract

Mesenchymal stem cells are to be multipotent cells that have the potential to differentiate into different lineages of mesenchymal tissues including cartilage and bone. These cells have an excellent regeneration potential for tissue repair. Pluripotent mesenchymal progenitor cells are denoted as stromal or mesenchymal stem cells. These cells are relative easy to isolate from small aspirates of bone marrow and can be expand in culture. They are able to differentiate into lineage. This process is assisted by application of bioactive molecules, specific growth factors and biomaterials (scaffolds). Articular cartilage injury has a poor prognosis for repair. Mesenchymal stem cells, when exposed to growth factors can differentiate into cells which become chondroblasts and these are able to form cartilage. The formation of bone after injury requires mesenchymal stem cells which are capable to differentiate into osteoblasts. Together with growth factors, first of all with bone morphologic proteins excellent reparative process can be achieved. The authors deal in this chapter with the experimental investigations and clinical applications of the adult bone marrow derived mesenchymal stem cells, bioactive molecules and carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Adenomatous polyposis coli

Beta catenin:

An integral component in the Wnt signaling pathway

BMP:

Bone morphogenetic protein

BMPs:

Bone morphologic proteins

DBM:

Demineralized bone matrix

DMEM:

Dulbecos’s modified Eagle’s medium

Dvl:

Dishevelled

FGF(a,b):

Fibroblast growth factor (acid, basic)

Fz:

Frizzled

GSK-3b:

Glycogen synthase kinase 3b

IGF:

Insuline like growth factor

LEF:

Lymphoid enhancer factor

LRP:

Low-density lipoprotein receptor related protein

MSC:

Mesenchymal stem cell

PDGF:

Platelet derived growth factor

PGA:

Polyglycolic acid

PLA:

Polylactic acid

PLLA:

Poly (L-lactic acid)

rh BMP:

Recombinant bone morphologic protein

Scaffold:

Degradable carrier

SMAD:

Merging the terms Sma and Mad genes

TCF:

T cell factor

TGF beta:

Transforming growth factor beta

Wnt:

Combination of Wg (wingless) and Int genes

References

  1. Prockop JD (1997) Marrow stromal cells as stem cells for nonhemapoetic tissues. Science 276(4):71–74

    Article  PubMed  CAS  Google Scholar 

  2. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell based tissue engineering. Arthritis Res Ther 3(1):532–544

    Google Scholar 

  3. Bianco P, Kuznetsov SA, Riminucci M, Gehron Robey P et al (2006) Postnatal skeletal stem cells. Methods Enzymol 419:117–148

    Article  PubMed  CAS  Google Scholar 

  4. Salamon A, Toldy E (2009) The role of adult bone marrow derived mesenchymal stem cells, growth factors and carriers in the treatment of cartilage and bone defects. J Stem Cells 4(1):71–80

    PubMed  Google Scholar 

  5. Salamon A, Toldy E (2009) Adult bone marrow derived mesenchymal stem cells and stem cells for tissue repair. Clin Exp Med J 3(3):369–379

    Article  Google Scholar 

  6. Xiao Y, Mareddy S, Crawford R (2010) Clonal characterisation of bone marrow derived stem cells and their application. Int Oral Sci 2(3):127–135

    Google Scholar 

  7. Pittinger MF, Mackay M, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(2):143–147

    Article  Google Scholar 

  8. Hatekayama Y, Nagujen J, Wang X et al (2003) Smad signalling in mesenchymal and chondroprogenitor cells. J Bone Joint Surg 85-A(Suppl 3):13–18

    Google Scholar 

  9. Maegawa N, Kavamura K, Hirose M, Yajima H et al (2007) Enhancement of osteoblastic differentiation of mesenchymal stem cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor (FGF-2). Tissue Eng Regen Med 1(4):306–313

    Article  CAS  Google Scholar 

  10. Niemeyer P, Krause V, Punzel M, Fellenberg J et al (2003) Mesenchymale Stammzellen zum Tissue Engineering von Knochen: dreidimensionale osteogene Differezierung auf mineralisierten Kollagen. Z Orthop 141(6):712–717

    Article  PubMed  CAS  Google Scholar 

  11. Song Su, Jin OJ, Seok Y, Keum H et al (2007) Effect of culture conditions osteogenic differentiation in human mesenchymal stem cells. J Microbiol Biotechnol 17(7):1113–1119

    PubMed  CAS  Google Scholar 

  12. Bosnakovski D, Mizuno M, Kim G, Takagi S et al (2006) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen II type extracellular matrix MSC chondrogenesis. Biotechnol Bioeng 93(6):1152–1163

    Article  PubMed  CAS  Google Scholar 

  13. Cheng H, Jiang W, Philips FM, Haydon RC et al (2003) Osteogenetic activity of the forteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg 85-A(8):1544–1552

    PubMed  Google Scholar 

  14. Titorencu I, Jinga VV, Constantinescu E, Gefencu AV et al (2006) Proliferation, differentiation and characterisation of osteoblasts for human BM mesenchymal cells. Cytotherapy 9(7):682–696

    Article  Google Scholar 

  15. Kim H, Lee JH, Suh H (2003) Interaction of mesenchymal stem cells and osteoblasts for in vitro osteogenesis. Yonsei Med 44(2):187–197

    Google Scholar 

  16. Nauman A, Dennis J, Staudenmayer R, Rotter N et al (2002) Mesenchymale Stammzellen, neue möglichkeiten der Gewebezuchtung für die plastisch-rekonstruktive Chirurgie. Laringo Rhino-Othologie 81(7):521–527

    Article  Google Scholar 

  17. Reddi AH (2001) Bone morphogenetic proteins: from basic science to clinical applications. J Bone Joint Surg 83-A(Suppl 1):451–456

    Google Scholar 

  18. Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. J Bone Joint Surg 84-A(6):1032–1044

    PubMed  Google Scholar 

  19. Chen Y, Alman BA (2009) Wnt pathway, an essential role in bone regeneration. J Cell Biochem 106(3):353–362

    Article  PubMed  CAS  Google Scholar 

  20. Zou L, Zou X, Myging T, Zeng Y et al (2006) Molecular mechanism of osteochondroprogenitor fate determination during bone formation. Adv Exp Med Biol 585:431–441

    Article  PubMed  CAS  Google Scholar 

  21. Silkstone D, Hong H, Alman BA (2008) Beta catenin in the race to fracture repair: in it to Wnt. Nat Clin Pract Rheumatol 4(8):413–419

    Article  PubMed  CAS  Google Scholar 

  22. Zimmermann G, Moghaddam A, Wagner C, Vock B et al (2006) Klinische Erfahrungen mit Bone Morphogenetic Protein 7 (BMP 7) bei Pseudoarthrosen langer Röhrenknochen. Der Unfallchirurg 109(7):528–537

    Article  PubMed  CAS  Google Scholar 

  23. Cook S, Baffes G, Wolfe MW, Sampath K et al (1994) The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. J Bone Joint Surg 76-A(6):827–838

    Google Scholar 

  24. Bouxsein ML, Turek TJ, Blake CA, D’Augusta BS et al (2001) Recombinant bone morphogenetic protein-2 accerelates healing in a rabbit ulnar osteotomy. J Bone Joint Surg 83(8):219–1229

    Google Scholar 

  25. Yasko AW, Lane JM, Fellinger EJ, Rosen V et al (1992) The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein ( rhBMP-2). J Bone Joint Surg 74-A(5):659–670

    Google Scholar 

  26. Radomsky ML, Aufdemorte TB, Swain LD, Fox T (1999) Novel formulation of fibroblast growth factor in hyaluron gel accerelates fracture healing in nonhuman primates. J Orthop Res 17(4):607–614

    Article  PubMed  CAS  Google Scholar 

  27. Solchaga LA, Dennis JE, Goldberg VM, Caplan AI (1999) Hyaluronic acid-based polymers as cell carriers for tissue engineered repair of bone and cartilage. J Orthop Res 17(2):205–213

    Article  PubMed  CAS  Google Scholar 

  28. Kayakabe M, Tsutsumi S, Watanabe H, Kato Y et al (2006) Transplantation of autologous rabbit BM-derived stromal cells embedded in hyaluronic acid gel sponge into osteochondral defects of the knee. Cytotherapy 8(4):343–353

    Article  PubMed  CAS  Google Scholar 

  29. Johnson EE, Urist MR, Finerman GA (1992) Resistant nonunions and partial or complete segmental defects of long bones. Treatment with implants of a composite of human bone morphogenetic protein (BMP) and autolysed antigen extracted allogeneic bone. Clin Orthop 277:229–237

    PubMed  Google Scholar 

  30. Finkemeier Ch (2002) Bone grafting and bone-graft substitutes. J Bone Joint Surg 84-A(3):454–464

    PubMed  Google Scholar 

  31. Tiedeman JJ, Garvin KL, Klle TA, Conolly JF (1995) The role of a composite demiralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics 18(12):1153–1158

    PubMed  CAS  Google Scholar 

  32. den Boer FC, Wippermann BW, Blokhuis TJ, Patka P et al (2006) Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-I or autologous bone marrow. J Orthop Res 21(3):521–528

    Article  Google Scholar 

  33. Wolfe SW, Pike L, Slade JF, Katz LD (1999) Augmentation of distal radius fracture fixation with coralline hydroxyapatite bone graft substitute. J Hand Surg (Am) 24(4):816–827

    Article  CAS  Google Scholar 

  34. Wheeler DL, Stokes KE, Park HM, Hollinger JO (1997) Evaluation of particulate bioglass in a rabbit radius osteotomy model. J Biomed Mater Res 35(2):249–254

    Article  PubMed  CAS  Google Scholar 

  35. Hollinger JO, Leong K (1996) Poly(alpha-hydroxy) acids: carriers for bone morphogenetic proteins. Biomaterials 17(2):187–194

    Article  PubMed  CAS  Google Scholar 

  36. Partridge K, Yang X, Clarke NMP, Okubo Y et al (2002) Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds. Biochem Biophys Res Commun 292(1):144–152

    Article  PubMed  CAS  Google Scholar 

  37. El-Amin SF, Attawia M, Lu H, Shah A et al (2002) Integrin expression by human osteoblast cultured on degradable polymeric materials applicable for tissue engineered bone. J Orthop Res 20(1):20–28

    Article  PubMed  CAS  Google Scholar 

  38. Hu J, Liu X, Ma PX (2009) Chondrogenic and osteogenic differentiation of human bone marrow derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials 30(28):5061–5067

    Article  PubMed  CAS  Google Scholar 

  39. Potier E, Noailly J, Ito K (2010) Directing bone marrow-derived cell function with mechanics. J Biomed 43(5):807–817

    CAS  Google Scholar 

  40. Pelinkovic D, Horas U, Engelhard M, Lee JY et al (2002) Gentherapie von Knorpelgewebe. Z Orthop 140(2):153–159

    Article  PubMed  CAS  Google Scholar 

  41. Steinert AF, Palmer GD, Pilapil C, Nöth U et al (2009) Enhanced in vitro chondrogenesis of primary mesenchymal stem cells by combined gene transfer. Tissue Eng Part A 15(5):1127–1139

    Article  PubMed  CAS  Google Scholar 

  42. Evans Ch, Robbins PD (1995) Possible orthopaedic applications of gene therapy. J Bone Joint Surg 77-A(7):1103–11014

    Google Scholar 

  43. Scaduto AA, Lieberman JR (1999) Gene therapy for osteoinduction. Orthop Clin North Am 30(4):625–633

    Article  PubMed  CAS  Google Scholar 

  44. Spitkovsky D, Hescheler J (2008) Adult mesenchymal stromal cells for therapeutic applications. Minim Invasive Ther Allied Technol 17(2):79–90

    Article  PubMed  CAS  Google Scholar 

  45. Sotiropoulou PA, Papamichail M (2007) Immune properties of mesenchymal stem cells. Methods Mol Biol 407:225–243

    Article  PubMed  CAS  Google Scholar 

  46. Dazzi F, Horwood NJ (2007) Potential of mesenchymal stem cells therapy. Curr Opin Oncol 19(6):650–655

    Article  PubMed  Google Scholar 

  47. Brooke G, Cook M, Blair C, Han R et al (2007) Stromal cells. Semin Cell Dev Biol 18(6):845–858

    Article  Google Scholar 

  48. Hollander AP, Heathfield TF, Webber C et al (1994) Increased damage to type II collagen in ostreoarthric articular cartilage detected by a new immunoassay. J Clin Invest 93(4):1722–1732

    Article  PubMed  CAS  Google Scholar 

  49. Hollander AP, Dickinson SC, Kafienah W (2010) Stem cells and cartilage development: complexities of a simple tissue. Stem Cells 28(11):1992–1996

    Article  PubMed  CAS  Google Scholar 

  50. Cook SD, Patron LP, Salkeld SL, Rueger D (2003) Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. J Bone Joint Surg 85-A(Suppl 3):116–123

    PubMed  Google Scholar 

  51. Stewart AA, Byron CR, Pondenis H, Stewart MC (2007) Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis. Am J Vet Res 68(9):941–945

    Article  PubMed  CAS  Google Scholar 

  52. Hunziker EB, Driesang IR, Morris EA (2001) Chondrogenesis in cartilage repair is induced by members of transforming growth factor beta superfamily. Clin Orthop 391(Suppl S):171–181

    Google Scholar 

  53. Guo X, Zheng Q, Kulbaski I, Yuan Q et al (2006) Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfered mesenchymal stem cells seeded on porous beta TPC ceramic scaffolds. Biomed Mater 1(3):93–99

    Article  PubMed  CAS  Google Scholar 

  54. Diao H, Wang J, Xia S, Dong L et al (2009) Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-beta-1 gene activated scaffolds. Tissue Eng Part A 15(9):2687–2698

    Article  PubMed  CAS  Google Scholar 

  55. Lee JW, Kim Y, Kim SH, Han SH et al (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical application. Yonsei Med J 30(45 Suppl):41–47

    Google Scholar 

  56. Moiloi EK, Mao JJ (2006) Chondrogenesis of mesenchymal stem cells by controlled delivery of transforming growth factor beta-3. Conf Proc IEEE Eng Med Biol Soc 1:2647–2650

    Article  Google Scholar 

  57. Ronziere MC, Perrier E, Mallein-Gerin F, Freyiria AM (2010) Chondrogenic potential of bone marrow and adipose tissue- derived adult human mesenchymal stem cells. Biomed Mater Eng 1(3):145–158

    Google Scholar 

  58. Miljkovic ND, Cooper GM, Marra KG (2008) Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthritis Cartilage 16(10):1121–1130

    Article  PubMed  CAS  Google Scholar 

  59. Majundar MK, Wang E, Morris EA (2001) BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of Il-1. Cell Physiol 189(3):275–284

    Article  Google Scholar 

  60. Bai X, Zhao C, Duan H, Qu F (2011) BMP-7 induces the differentiation of bone marrow-derived mesenchymal cells into chondrocytes. Med Biol Eng Comput 49(6):687–692

    Article  PubMed  Google Scholar 

  61. Pacifici L, Casella F, Ripari M (2002) The principles of tissue engineering: role of growth factors in the bone regeneration. Minerva Stomatol 51(9):351–359

    PubMed  CAS  Google Scholar 

  62. Kessler S, Mayr-Wohlfart U, Ignatius A, Puhl W et al (2003) Der Einfluss von Bone Morphogenetic Protein 2 (BMP-2), Vascular Endothelial Growth Factor (VEGF) und basischem Fibroblasten Wachstumfactor (bFGF) und Osteointegration. Degradation und biochemische Eigenschaften eines synthetischern Knochen Ersatzstoffes. Z Orthop 141(4):472–480

    Article  PubMed  CAS  Google Scholar 

  63. Govender S, Csimma C, Genant HK, Valentin-Opran A, BESTT (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures. J Bone Joint Surg 84-A(12):2123–2134

    PubMed  Google Scholar 

  64. Sciadini MF, Johnson KD (2000) Evaluation of recombinant human bone morphogenetic protein-2 as a bone graft substitute in a canine segmental defect model. Orthop Res 18(2):289–302

    Article  CAS  Google Scholar 

  65. Bostrom MP, Camacho NR (1998) Potential role of bone morphogenetic proteins in fracture healing. Clin Orthop 355(Suppl S):274–282

    Google Scholar 

  66. Cook SD, Baffes GC, Wolfe MW, Sampath K et al (1994) Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop 301(4):302–312

    PubMed  Google Scholar 

  67. Cheng H, Wei Jiang BA, Phillips FM, Haydon RC et al (2003) Osteogenetic activity of the forteen type of human bone morphogenetic proteins (BMPs). J Bone Joint Surg 85/A(8):1544–1552

    Google Scholar 

  68. Koch H, Jadloviec JH, Whalen JD, Robbins P et al (2005) Osteoblastare Differenzierung von humanen adulten mesenchymalen Stammzellen durch transgenes BMP-2 in Abwesenheit von Dexamethasone. Z Orthop 143(6):684–690

    Article  PubMed  CAS  Google Scholar 

  69. Riew KD, Wright NM, Cheng S, Avioli LV et al (1998) Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcif Tissue Int 63(4):357–360

    Article  PubMed  CAS  Google Scholar 

  70. Lou J, Xu F, Merkel K, Manske P (1999) Gene therapy: adenovirus mediated human bone morphogenetic protein-2 gene transfer induces mesenchymal progenitor cell proliferation and differentiation in vivo. J Orthop Res 17(1):43–50

    Article  PubMed  CAS  Google Scholar 

  71. Berner A, Hendrich C, Battmann A, Schütze N et al (2003) Rekonstruktion von Gelenkknorpeldefekten mit Knorpel Polymer-Konstrukten hergestellt durch Beschichtung mit mesenchymalen Stammzellen. Z Orthop 141(S1):176

    Google Scholar 

  72. Hendrich C, Weber M, Battmann A, Steinert A et al (2003) Chondrogene Differenzierung von humanen Chondrozyten und mesenchymalen Stammzellen in einem in vivo Modell. Z Orthop 141:S1–S176

    Google Scholar 

  73. Wakitani S, Nawata M, Tensho K, Okabe T et al (2007) Repair of cartilage defects in patellofemoral joint with autologous bone marrow mesenchymal cell transplantation: three cases report involving nine defects in five knees. Tissue Eng Regen Med 1(1):74–79

    Article  Google Scholar 

  74. Wakitani S, Okabe T, Horibe S, Mitsuoka T et al (2011) Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med 5(2):146–150

    Article  PubMed  Google Scholar 

  75. Einhorn TA (2003) Clinical applications of recombinant human BMPs: early experience and future development. J Bone Joint Surg 2003/A(Suppl 3):82–88

    Google Scholar 

  76. Friedlaender GE, Perry CR, Cole JD, Cook SD et al (2001) Osteogenic protein −1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg 83-A(Suppl 1):151–158

    Google Scholar 

  77. Geesink RG, Hoefnagels NH, Bulstra SK (1999) Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in human fibular defect. J Bone Joint Surg Br 81(4):710–718

    Article  PubMed  CAS  Google Scholar 

  78. Seeherman H, Li R, Wozney J (2003) A review of preclinical program development for evaluating injectable carriers for osteogenetic factors. J Bone Joint Surg 85/A(Suppl 3):96–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antal Salamon M.D., Ph.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Salamon, A., Toldy, E. (2012). The Role of Adult Bone Marrow Derived Mesenchymal Stem Cells, Growth Factors and Scaffolds in the Repair of Cartilage and Bone. In: Srivastava, R., Shankar, S. (eds) Stem Cells and Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2801-1_14

Download citation

Publish with us

Policies and ethics