Skip to main content

Positronium Formation and Scattering from Biologically Relevant Molecules

  • Chapter
  • First Online:
Radiation Damage in Biomolecular Systems

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Recent progress in our experimental studies of positronium formation and scattering from simple atomic and molecular systems are reviewed. The former are used to highlight key features of ionizing collision by positrons before considering recent phenomena observed in the case of molecular targets, including positron impact excitation-ionization and the electron-like scattering of positronium. The guiding theme of this review arises from the role that repeated cycles of formation and dissociation of positronium are expected to play in the accurate description of positron interaction with matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ionization–excitation events are a subset of the above-identified ionization events.

  2. 2.

    As per the charge-sign independence of the cross-sections within the First Born Approximation.

References

  1. R. Campeanu, J. Darewych, A. Stauffer, XV International Workshop on Low Energy Positron and Positronium Physics (IOP Publishing, London, 2010)

    Google Scholar 

  2. S. Cherry, et al, Physics in Nuclear Medicine (Saunders, Philadelphia, 2003)

    Google Scholar 

  3. C. Hayes, et al, J Nucl Med 43, 210 (2002)

    MathSciNet  Google Scholar 

  4. G. Laricchia, et al, Adv. At. Mol. Opt. Phys. 56, 1 (2008)

    Google Scholar 

  5. P. Van Reeth, G. Laricchia, J.W. Humberston, Physica Scripta 71, C9 (2005)

    Article  Google Scholar 

  6. A. Zecca, et al, J Phys B 39, 1597 (2006)

    Article  ADS  Google Scholar 

  7. D.J. Murtagh, et al, Nucl. Instr. Meth. B 247, 92 (2006)

    Article  ADS  Google Scholar 

  8. J. Beale, S. Armitage, G. Laricchia, J Phys B 39, 1337 (2006)

    Article  ADS  Google Scholar 

  9. C. Makochekanwa, et al, New J. Phys. 11, 103036 (2009)

    Article  ADS  Google Scholar 

  10. A. Rich, Rev. Mod. Phys. 53, 127 (1981)

    Article  ADS  Google Scholar 

  11. S.D. Benedetti, H.C. Corben, Ann. Rev. Nucl. Sci. 4, 191 (1954)

    Article  ADS  Google Scholar 

  12. D.J. Murtagh, et al, J. Phys. B 38, 3857 (2005)

    Article  ADS  Google Scholar 

  13. J. Moxom, P. Ashley, G. Laricchia, Can. J. Phys. 74, 367 (1996)

    Article  ADS  Google Scholar 

  14. R. Rejoub, B.G. Lindsay, R.F. Stebbings, Phys. Rev. A 65, 042713 (2002)

    Article  ADS  Google Scholar 

  15. P. Caradonna, et al, Phys. Rev. A 80, 032710 (2009)

    Article  ADS  Google Scholar 

  16. N. Overton, R.J. Mills, P.G. Coleman, J. Phys. B 26, 3951 (1993)

    Article  ADS  Google Scholar 

  17. R. Utamuratov, et al, J. Phys. B 43, 125203 (2010)

    Article  ADS  Google Scholar 

  18. Y. Cheng, Y. Zhou, Phys. Rev. A 76, 012704 (2007)

    Article  ADS  Google Scholar 

  19. C.P. Campbell, et al, Nucl. Instr. Meth. B 143, 41 (1998)

    Article  ADS  Google Scholar 

  20. H. Knudsen, J.P. Reading, Phys. Rep. 212, 107 (1992)

    Article  ADS  Google Scholar 

  21. K. Paludan, et al, J. Phys. B 30, L581 (1997)

    Article  ADS  Google Scholar 

  22. A.C.L. Jones, et al, J. Phys. Conf. Ser. 194, 072012 (2009)

    Article  ADS  Google Scholar 

  23. J.P. Marler, J.P. Sullivan, C.M. Surko, Phys. Rev. A 71, 022701 (2005)

    Article  ADS  Google Scholar 

  24. G. Laricchia, et al, J. Phys. B 35, 2525 (2002)

    Article  ADS  Google Scholar 

  25. D.J. Murtagh, et al, Phys. Rev. Lett. 102, 133202 (2009)

    Article  ADS  Google Scholar 

  26. L.J.M. Dunlop, G.F. Gribakin, Nucl. Instr. Meth. B 247, 61 (2006)

    Article  ADS  Google Scholar 

  27. S. Gilmore, et al, Nucl. Instr. and Meth. B 221, 129 (2004)

    Article  ADS  Google Scholar 

  28. M. McAlinden, H. Walters, Hyperfine Interactions 73, 65 (1992)

    ADS  Google Scholar 

  29. P.A. Hervieux, et al, J. Phys. B 39, 409 (2006)

    Article  ADS  Google Scholar 

  30. G. Laricchia, J. Moxom, M. Charlton, Phys. Rev. Lett. 70, 3229 (1993)

    Article  ADS  Google Scholar 

  31. D.A. Cooke, et al, J. Phys. Conf. Ser. 199, 012006 (2010)

    Article  ADS  Google Scholar 

  32. C.K. Kwan, et al, Nucl. Instr. Meth. B 143, 61 (1998)

    Article  ADS  Google Scholar 

  33. T.C. Griffith, Positron Scattering in Gases (Plenum, New York, 1984), p. 53

    Book  Google Scholar 

  34. J.P. Marler, C.M. Surko, Phys. Rev. A 72, 062713 (2005)

    Article  ADS  Google Scholar 

  35. G. Laricchia, J. Moxom, Phys. Lett. A 174, 255 (1993)

    Article  ADS  Google Scholar 

  36. Y. Katayama, O. Sueoka, S. Mori, J. Phys. B 20, 1645 (1987)

    Article  ADS  Google Scholar 

  37. D.A. Cooke, et al, Phys. Rev. Lett. 104, 073201 (2010)

    Article  ADS  Google Scholar 

  38. S. Tsurubuchi, T. Iwai, J. Phys. Soc. Jap 37, 1077 (1974)

    Article  ADS  Google Scholar 

  39. S. Brawley, et al, Science 330, 789 (2010)

    Article  ADS  Google Scholar 

  40. M. Skalsey, et al, Phys. Rev. A 67, 022504 (2003)

    Article  ADS  Google Scholar 

  41. F. Saito, Y. Nagashima, T. Hyodo, J Phys B 36, 4191 (2003)

    Article  ADS  Google Scholar 

  42. A. Garner, A. Özen, G. Laricchia, J Phys B 33, 1149 (2000)

    Article  ADS  Google Scholar 

  43. S. Armitage, et al, Phys Rev Lett 89, 173402 (2002)

    Article  ADS  Google Scholar 

  44. S. Armitage, et al, Nucl. Instr. Meth. B 247, 98 (2006)

    Article  ADS  Google Scholar 

  45. S.J. Brawley, et al, Nucl. Instr. Meth. B 266, 497 (2008)

    Article  ADS  Google Scholar 

  46. J. Blackwood, et al, Phy. Rev. A 60, 4454 (1999)

    Article  ADS  Google Scholar 

  47. A. Basu, P. Sinha, A. Ghosh, Physical Review A 63, 052503 (2001)

    Article  ADS  Google Scholar 

  48. A. Garner, G. Laricchia, A. Özen, J Phys B 29, 5961 (1996)

    Article  ADS  Google Scholar 

  49. A. Garner, A. Özen, G. Laricchia, Nucl. Instr. Meth. B 143, 155 (1998)

    Article  ADS  Google Scholar 

  50. P. Biswas, S. Adhikari, J. Phy. B. 33, 1575 (2000)

    Article  ADS  Google Scholar 

  51. W. Kauppila, T. Stein, Adv. At. Mol. Optic. Phys. 26 (Academic Press, San Diego, 1990)

    Google Scholar 

  52. S. Brawley, et al, Phys Rev Lett 105, 263401 (2010)

    Article  ADS  Google Scholar 

  53. B. Boudaïffa, et al, Science 287, 1658 (2000)

    Article  ADS  Google Scholar 

  54. K.R. Hoffman, et al, Phys. Rev. A 25, 1393 (1982)

    Article  ADS  Google Scholar 

  55. Y. Itikawa, J. Phys. Chem. Ref. Data 31, 749 (2002)

    Article  ADS  Google Scholar 

  56. C.e.a. Szmytkowski, J Phys B 20, 5817 (1987)

    Google Scholar 

  57. C.K. Kwan, et al, Physical Review A 27, 1328 (1983)

    Article  ADS  Google Scholar 

  58. O. Sueoka, et al, J Phys B 19, L373 (1986)

    Article  ADS  Google Scholar 

  59. M. Kimura, et al, Adv. Chem. Phys. 111, 537 (2000)

    Article  Google Scholar 

  60. C. Szmytkowski, Chemical Physics Letters 136, 363 (1987)

    Article  ADS  Google Scholar 

  61. J. Ludlow, H. Walters, Many-Particle Spectroscopy of Atoms, Molecules, Clusters, and Surfaces (Kluwer/Plenum, 2001)

    Google Scholar 

  62. L. Sarkadi, Phys. Rev. A 68, 032706 (2003)

    Article  ADS  Google Scholar 

  63. C. Starrett, M. McAlinden, H. Walters, Phys. Rev. A 72, 012508 (2005)

    Article  ADS  Google Scholar 

  64. H. Ray, J Phys B 35, 3365 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Engineering and Physical Research Council and The European Union for supporting our positron and positronium research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Laricchia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Laricchia, G., Cooke, D.A., Brawley, S.J. (2012). Positronium Formation and Scattering from Biologically Relevant Molecules. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics