Skip to main content

Advances in Arctic Atmospheric Research

  • Chapter
  • First Online:
Arctic Climate Change

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 43))

Abstract

The previous decade and a half saw major advances in understanding of the Arctic atmosphere and the ability to project future climate states based on reanalysis datasets, field studies, and climate models. Limitations continue to be the lack of direct observations of the Arctic troposphere. The balance of evidence now argues for an anthropogenic component to Arctic change. Today, we see positive Arctic-wide temperature trends in all seasons with an Arctic amplification relative to lower latitude changes, but with strong regional modulations from natural variability. These include a positive index of the Arctic Oscillation (AO) in the early 1990s, a record negative phase of the AO during the winter of 2009/2010, and increased prominence of an Arctic Dipole (AD) climate pattern. The negative AO period showed linkages between Arctic and subarctic weather. Despite deficiencies in climate models used for the International Panel of Climate Change (IPCC), all models project increased temperatures and sea ice loss by mid-century, amplified through Arctic feedback processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambaum MHP, Hoskins BJ (2002) The NAO troposphere-stratosphere connection. J Clim 15:1969–1978

    Article  Google Scholar 

  • Ambaum MHP, Hoskins BJ, Stephenson DB (2001) Arctic oscillation or north Atlantic oscillation? J Clim 14:3495–3507

    Article  Google Scholar 

  • Bengtsson L, Semenov V, Johannessen OM (2004) The early 20th century warming in the Arctic—a possible mechanism. J Clim 17:4045–4057

    Article  Google Scholar 

  • Budikova D (2009) Role of Arctic sea ice in global atmospheric circulation: a review. Glob Planet Chang 68:149–163

    Article  Google Scholar 

  • Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37:L20704. doi:10.1029/2010GL044613

    Article  Google Scholar 

  • Chapman WL, Walsh JE (2007) Simulations of Arctic temperature and pressure by global coupled models. J Clim 20:609–632

    Article  Google Scholar 

  • De Weaver E, Nigam S (2000) Zonal-eddy dynamics of the NAO. J Clim 13:3893–3914

    Article  Google Scholar 

  • Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late 21st century. J Clim 23:333–351. doi:10.1175/2009JCLI3053.1

    Article  Google Scholar 

  • Döscher R, Wyser K, Meier M, Qian R, Redler G (2009) Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice-atmosphere model. Clim Dyn 34:1157–1176

    Article  Google Scholar 

  • Feldstein SB (2002) The recent trend and variance increases of the annular mode. J Clim 15:88–94

    Article  Google Scholar 

  • Francis JA, Chan W-H, Leathers DJ, Miller JR, Veron DE (2009) Winter northern hemisphere weather patterns remember summer. Geophys Res Lett 36:L07503. doi:10.1029/2009GL037274

    Article  Google Scholar 

  • Gillett NP, Zwiers FW, Weaver AJ, Stott PA (2003) Detection of human influence on sea-level pressure. Nature 422:292–294

    Article  Google Scholar 

  • Grant AN, Brönnimann S, Ewen T, Griesser T, Stickler A (2009) The early twentieth century warming period in the European Arctic. Meteorol Z 18:425–432

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent north Atlantic climate change. Science 292:90–92

    Article  Google Scholar 

  • Holland MM, Bitz CM, Tremblay B, Bailey DA (2008) The role of natural versus forced change in future rapid summer Arctic ice loss. In: Arctic sea ice decline: observations, projections, mechanisms, and implications, Geophysical monograph Series 180. AGU, Washington, DC

    Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) The north Atlantic oscillation: climate significance and environmental impact, Geophysical monograph series 134. AGU, Washington, DC, 279 pp

    Chapter  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 996 pp

    Google Scholar 

  • Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modeled temperature and sea-ice variability. Tellus 56A:328–341

    Google Scholar 

  • Kattsov VM, Walsh JE, Chapman WL, Govorkova VA, Pavlova TV, Zhang X (2007) Simulation and projection of Arctic freshwater budget components by the IPCC AR4 global climate models. J Hydrometeorol 8:571–589

    Article  Google Scholar 

  • Kerr RA (1999) A new force in high-latitude climate. Science 284:241–242

    Article  Google Scholar 

  • Kumar A, Perlwitz J, Eischeid J, Quan X, Xu T, Zhang T, Hoerling M, Jha B, Wang W (2010) Contribution of sea ice loss to Arctic amplification. Geophys Res Lett 37:L21701. doi:10.1029/2010GL045022

    Article  Google Scholar 

  • Kuroda Y (2002) Relationship between the polar-night jet oscillation and the annular mode. Geophys Res Lett 29:1240. doi:10.1029/2001GL013933

    Article  Google Scholar 

  • Kutzbach J (1970) Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea-level pressure. Mon Weather Rev 98:708–716

    Article  Google Scholar 

  • L’Heureux ML, Kumar A, Bell GD, Halpert MS, Higgins RW (2008) Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys Res Lett 35:L20701. doi:10.1029/2008GL035205

    Article  Google Scholar 

  • Li J, Wang JXL (2003) A modified zonal index and its physical sense. Geophys Res Lett 30(12):1632. doi:10.1029/2003GL017130

    Article  Google Scholar 

  • Limpasuvan V, Hartmann DL (2000) Wave maintained annular modes of climate variability. J Clim 13:4414–4429

    Article  Google Scholar 

  • Maslanik J, Drobot S, Fowler C, Emery W, Barry R (2007) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34:L03711. doi:10.1029/2006GL028269

    Article  Google Scholar 

  • Miller GH, Alley RB, Brigham-Grette J, Fitzpatrick JJ, Polyak L, Serreze M, White JWC (2010) Arctic amplification: can the past constrain the future? Quat Sci Rev 29:1779–1790

    Article  Google Scholar 

  • Monohan AH, Fyfe JC, Pandolfo L (2003) The vertical structure of wintertime climate regimes of the northern hemisphere extratropical atmosphere. J Clim 16:2005–2021

    Article  Google Scholar 

  • Overland JE (2009) The case for global warming in the Arctic. In: Nihoul JCJ, Kostianoy AG (eds) Influence of climate change on the changing Arctic and Sub-Arctic conditions. Springer, Dordrecht, pp 13–23

    Chapter  Google Scholar 

  • Overland JE, Adams JM (2001) On the temporal character and regionality of the Arctic oscillation. Geophys Res Lett 28:2811–2814

    Article  Google Scholar 

  • Overland JE, Wang M (2005) The third Arctic climate pattern: 1930s and early 2000s. Geophys Res Lett 32:L23808. doi:10.1029/2005GL024254

    Article  Google Scholar 

  • Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus 62A:1–9

    Google Scholar 

  • Overland JE, Spillane MC, Soreide NN (2004a) Integrated analysis of physical and biological pan-Arctic change. Clim Chang 63:291–322

    Article  Google Scholar 

  • Overland JE, Spillane MC, Percival DB, Wang M, Mofjeld HO (2004b) Seasonal and regional variation of pan-Arctic surface air temperature over the instrumental record. J Clim 17:3263–3282

    Article  Google Scholar 

  • Overland JE, Wood KR, Wang M (2011) Warm Arctic-cold continents: climate impacts of the newly open Arctic Sea. Polar Res (in press)

    Google Scholar 

  • Palmer TN (1999) A nonlinear dynamical perspective on climate prediction. J Clim 12:575–591

    Article  Google Scholar 

  • Peng MS, Robinson WA, Li S (2003) Mechanism for the NAO responses to the North Atlantic SST tripole. J Clim 16:1987–2004

    Article  Google Scholar 

  • Persson POG, Fairall CW, Andreas EL, Guest PS, Perovich DK (2002) Measurements near the atmospheric surface flux group tower at SHEBA: near-shore conditions and surface energy budget. J Geophys Res 107(C10):8045. doi:10.1029/2000JC000705

    Article  Google Scholar 

  • Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111. doi:10.1029/2009JD013568

    Article  Google Scholar 

  • Polyakov IV, Bekryaev RV, Alekseev GV, Bhatt U, Colony RL, Johnson MA, Makshtas AP, Walsh D (2003) Variability and trends of air temperature and pressure in the maritime Arctic. J Clim 16:2067–2077

    Article  Google Scholar 

  • Quadrelli R, Wallace JM (2004) A simplified linear framework for interpreting patterns of northern Hemisphere wintertime climate variability. J Clim 17:3728–3744

    Article  Google Scholar 

  • Robock A, Mao J (1992) The volcanic signal in surface temperature observations. J Clim 8:1086–1103

    Article  Google Scholar 

  • Rogers JC, McHugh MJ (2002) On the separability of the north Atlantic oscillation and the Arctic oscillation. Clim Dyn 19:599–608

    Article  Google Scholar 

  • Schweiger AJ, Lindsay RW, Vavrus S, Francis JA (2008) Relationships between Arctic sea ice and clouds during autumn. J Clim 21:4799–4810

    Article  Google Scholar 

  • Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337

    Article  Google Scholar 

  • Seager R, Kushnir Y, Nakamura J, Ting M, Naik N (2010) Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys Res Lett 37:L14703. doi:10.1029/2010GL043830

    Article  Google Scholar 

  • Seierstad IA, Bader J (2008) Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Clim Dyn. doi:10.1007/s00382-008-0463-x

    Google Scholar 

  • Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Chang 76:241–264. doi:1007/s10584-005-9017-y

    Article  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS III, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Chang 46(1–2):159–207

    Article  Google Scholar 

  • Serreze MC, Barrett AP, Slater AG, Steele M, Zhang J, Trenberth KE (2007) The large-scale energy budget of the Arctic. J Geophys Res 112:D11122. doi:10.1029/2006JD008230

    Article  Google Scholar 

  • Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2008) The emergence of surface-based Arctic amplification. The Cryosphere 2:601–622

    Article  Google Scholar 

  • Skeie P (2000) Meridional flow variability over the Nordic seas in the Arctic oscillation framework. Geophys Res Lett 27:2569–2572

    Article  Google Scholar 

  • Stenchikov G, Robock A, Ramaswamy V, Schwarzkopf MD, Hamilton K, Ramachandran S (2002) Arctic Oscillation response to the 1991 Mount Pinatubo eruption: effects of the volcanic aerosols and ozone depletion. J Geophys Res 107. doi:10.1029/2002JD002090

    Google Scholar 

  • Stott PA, Tett SFB, Jones GS, Allen MR, Ingram WJ, Mitchell JFB (2001) Attribution of twentieth century temperature change to natural and anthropogenic causes. Clim Dyn 17:1–21

    Article  Google Scholar 

  • Stroeve J, Serreze M, Drobot S, Gearheard S, Holland M, Maslanik J, Meier W, Scambos T (2008) Arctic sea ice extent plummets in 2007. EOS Trans Am Geophys Union 89:13–14

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Walsh JE, Chapman WL, Romanovsky V, Christensen JH, Stendel M (2008) Global climate model performance over Alaska and Greenland. J Clim 21:6156–6174

    Article  Google Scholar 

  • Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:L07502. doi:10.1029/2009GL037820

    Article  Google Scholar 

  • Wang J, Zhang J, Watanabe E, Ikeda M, Mizobata K, Walsh JE, Bai X, Wu B (2009) Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys Res Lett 36:L05706. doi:10.1029/2008GL036706

    Article  Google Scholar 

  • Wood KR, Overland JE (2010) Early 20th century Arctic warming in retrospect. Int J Climatol. doi:10.1002/joc.1973

    Google Scholar 

  • Wood KR, Overland JE, Jónsson T, Smoliak BV (2010) Air temperature variations on the Atlantic–Arctic boundary since 1802. Geophys Res Lett 3:L17708. doi:10.1029/2010GL044176

    Article  Google Scholar 

  • Wu B, Wang J, Walsh JE (2006) Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J Clim 19:210–225

    Article  Google Scholar 

  • Zhang X, Sorteberg A, Zhang J, Gerdes R, Comiso J (2008) Recent radical shifts in atmospheric circulations and rapid changes in Arctic climate system. Geophys Res Lett 35:L22701. doi:10.1029/2008GL035607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Overland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Overland, J.E., Serreze, M.C. (2012). Advances in Arctic Atmospheric Research. In: Lemke, P., Jacobi, HW. (eds) Arctic Climate Change. Atmospheric and Oceanographic Sciences Library, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2027-5_2

Download citation

Publish with us

Policies and ethics