Skip to main content

Homogenization of Granular Material Modeled by a 3D DEM

  • Chapter
  • First Online:
Particle-Based Methods

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 25))

Abstract

Within this contribution the mechanical behavior of dry frictional granular material is modeled by a three-dimensional discrete element method (DEM). The DEM uses a superquadric particle geometry which allows to vary the elongation and angularity of the particles and therefore enables a better representation of real grain shapes compared to standard spherical particles. To reduce computation times an efficient parallelization scheme is developed which is based on the Verlet list concept and the sorting of particles according to their spatial position. The macroscopic mechanical behavior of the particle model is analyzed through standard triaxial tests of periodic cubical samples. A technique to accurately apply stress boundary conditions is presented in detail. Finally, the triaxial tests are used to analyze the influence of the sample size and the particle shape on the resulting stress-strain behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The OpenMP API specification for parallel programming. http://openmp.org.

  2. Agnolin, I., Roux, J.N., On the elastic moduli of three-dimensional assemblies of spheres: Characterization and modeling of fluctuations in the particle displacement and rotation. Int. J. Solids Struct. 45(3–4):1101–1123, 2008.

    Article  MATH  Google Scholar 

  3. Antony, S.J., Kruyt, N.P., Role of interparticle friction and particle-scale elasticity in the shearstrength mechanism of three-dimensional granular media. Phys. Rev. E 79(3), 2009.

    Google Scholar 

  4. Antony, S.J., Kuhn, M.R., Influence of particle shape on granular contact signatures and shear strength: New insights from simulations. Int. J. Solids Struct. 41(21):5863–5870, 2004.

    Article  MATH  Google Scholar 

  5. Azema, E., Radjai, F., Saussine, G., Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41(6):729–741, 2009.

    Article  Google Scholar 

  6. Bardet, J.P., Vardoulakis, I., The asymmetry of stress in granular media. Int. J. Solids Struct. 38(2):353–367, 2001.

    Article  MATH  Google Scholar 

  7. Barr, A.H., Superquadrics and angle-preserving transformations. IEEE Comput. Graphics Appl. 1(1):11–23, 1981.

    Article  Google Scholar 

  8. Belheine, N., Plassiard, J.P., Donze, F.V., Darve, F., Seridi, A., Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36(1–2):320–331, 2009.

    Article  Google Scholar 

  9. Clayton, C.R.I., Abbireddy, C.O.R., Schiebel, R., A method of estimating the form of coarse particulates. Geotechnique 59(6):493–501, 2009.

    Article  Google Scholar 

  10. da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F., Rheophysics of dense granular materials: Discrete simulation of plane shear flows. Phys. Rev. E 72(2), 2005.

    Google Scholar 

  11. Hertz, H., Über die Berührung fester elastischer Körper (On the contact of elastic solids). Journal für die reine und angewandte Mathematik 92:156–171, 1882.

    Article  Google Scholar 

  12. Ishibashi, I., Perry, C., Agarwal, T.K., Experimental determinations of contact friction for spherical glass particles. Soils Found. 34(4):79–84, 1994.

    Google Scholar 

  13. Kingston, E., Clayton, C.R.I., Priest, J., Best, A., Effect of grain characteristics on the behaviour of disseminated methane hydrate bearing sediments. In: Proceedings of the 6th International Conference on Gas Hydrates. 2008.

    Google Scholar 

  14. Lin, X., Ng, T.T., A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique 47(2):319–329, 1997.

    Google Scholar 

  15. Lings, M.L., Dietz, M.S., An improved direct shear apparatus for sand. Geotechnique 54(4):245–256, 2004.

    Article  Google Scholar 

  16. Mindlin, R.D., Compliance of elastic bodies in contact. J. Appl. Mech. 16:259–268, 1949.

    MATH  MathSciNet  Google Scholar 

  17. Munjiza, A., The Combined Finite-Discrete Element Method. Wiley, 2004.

    Book  Google Scholar 

  18. Ouadfel, H., Rothenburg, L., An algorithm for detecting inter-ellipsoid contacts. Comput. Geotech. 24(4):245–263, 1999.

    Article  Google Scholar 

  19. Rowe, P.W., The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. London, Ser. A 269(1339):500–527, 1962.

    Article  Google Scholar 

  20. Salot, C., Gotteland, P., Villard, P., Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granular Matter 11(4):221–236, 2009.

    Article  Google Scholar 

  21. Schnaid, F., A study of the cone-pressuremeter test in sand. Ph.D. Thesis, University of Oxford, 1990.

    Google Scholar 

  22. Thornton, C., Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50(1):43–53, 2000.

    Article  Google Scholar 

  23. Verlet, L., Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159(1):98–103, 1967.

    Article  Google Scholar 

  24. Wellmann, C., Lillie, C., Wriggers, P., Comparison of the macroscopic behavior of granular materials modeled by different constitutive equations on the microscale. Finite Elem. Anal. Des. 44(5):259–271, 2008.

    Article  Google Scholar 

  25. White, D.J., Bolton, M.D., Displacement and strain paths during plane-strain model pile installation in sand. Geotechnique 54(6):375–397, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wellmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wellmann, C., Wriggers, P. (2011). Homogenization of Granular Material Modeled by a 3D DEM. In: Oñate, E., Owen, R. (eds) Particle-Based Methods. Computational Methods in Applied Sciences, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0735-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0735-1_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0734-4

  • Online ISBN: 978-94-007-0735-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics