Skip to main content

Tactile Sensing Technologies

  • Chapter
Robotic Tactile Sensing

Abstract

This chapter presents the state-of the-art of robotic tactile sensing technologies and analyzes the present state of research in the area tactile sensing. Various tactile sensing technologies have been discussed under three categories: (1) transduction methods; (2) structures that generate a signal on touch; and (3) new materials that intrinsically convert mechanical stimulus on touch into usable signals. The tactile sensing technologies are explained along with their merits and demerits. The working principle of various methods have been explained and selected implementations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The actual expressions of V xout or V yout are:

    $$ V_{xout}=\frac{R_{x2}R_L}{R_{x1}R_L+R_{x2}R_L+R_{x1}R_{x2}} V_x \qquad V_{yout}=\frac{R_{y2}R_L}{R_{y1}R_L+R_{y2}R_L+R_{y1}R_{y2}} V_y $$
    (5.1)

    where, R L is the resistance seen from contact point toward the measurement terminal i.e. R touch +R y1 (or R y2) + Hi-Z. When impedance at the measuring terminal is high, these expressions in (5.1) reduce to (5.2)–(5.3).

  2. 2.

    Electrical impedance tomography (EIT) is an imaging technique used to estimate the internal conductivity distribution of an electrically conductive body by using measurements made only at the boundary of the body. The technique is also used in non-invasive medical applications.

  3. 3.

    The measurement circuits used to measure the capacitance change are based on methods like, relaxation oscillator, Charge time versus voltage, Voltage divider, Charge transfer, and Sigma–Delta modulation etc. The capacitance changes are measured using parameters like shift of resonance frequency, frequency modulation, amplitude modulation, charge time measurement, time delay measurement, and duty cycle etc.

  4. 4.

    The charge carriers flowing through a conductive material, in presence of a magnetic field, experience a force orthogonal to their flow directions and the magnetic field direction. As a result the charge carriers are deflected, leading to the appearance of Hall potential in direction of the deflection. This is termed as Hall Effect. Due to this deflection, the charge carriers take a longer path to travel the length of the conductive material, meaning that the deflected particles have a lower mobility and hence an increased electrical resistance. This effect is known as magnetoresistance. Both the Hall effect and magnetoresistance can be used to measure magnetic field intensity.

  5. 5.

    Poling is the method of aligning or orienting the dipoles in a particular direction. Generally, poling is done by applying a strong electric field (sometimes in combination with mechanical processes such as stretching), whose direction also sets the direction of polarization.

  6. 6.

    The percolation theory model fails below the percolation threshold, where it predicts that the composite is an insulator. Effective medium theories have been developed that provide a good description of the evolution of the conductivity across the full range of filler concentrations. Discussion on such theories is beyond the scope of this book and reader may refer to relevant literature [87].

  7. 7.

    When a piece of weak polyelectrolyte gel is pressed, the pH of the gel changes reversibly. The pH change is associated with an enhanced ionization of the carboxyl groups under deformation. The compression in one direction expands the gel laterally and induces a one-dimensional dilatation of the polymer network in this direction. This brings about an increased chemical free energy (a decrease in entropy) of the polymer chain, which should be compensated for by a simultaneous increase in its degree of ionization.

  8. 8.

    The electro-optic effect is the change in refractive index of materials with external field.

  9. 9.

    Polymer-MEMS does not mean that the device is entirely made of polymers. In fact, heterogeneous integration of organic and inorganic materials is often necessary and desired. For example, it is often necessary to integrate signal conditioning and signal processing electronics directly with sensors. For large area sensor skin, the ability to integrate electronics and sensors is indispensable to reduce lead routing complexity.

  10. 10.

    There is an analogy between this structure and the human skin. The pyramid like microstructure can be viewed similar to the intermediate ridges present at the dermis–epidermis junction of human skin (Chap. 3). The ridge microstructures in skin are also known to improve the tactile sensitivity in humans [136138].

References

  1. L.D. Harmon, Automated tactile sensing. Int. J. Robot. Res. 1(2), 3–31 (1982)

    Article  Google Scholar 

  2. H.R. Nicholls, M.H. Lee, A survey of robot tactile sensing technology. Int. J. Robot. Res. 8(3), 3–30 (1989)

    Article  Google Scholar 

  3. W.D. Hillis, Active touch sensing. Int. J. Robot. Res. 1(2), 33–44 (1982)

    Article  Google Scholar 

  4. P. Dario, D. de Rossi, Tactile sensors and gripping challenge. IEEE Spectr. 22(8), 46–52 (1985)

    Google Scholar 

  5. S.C. Jacobsen, I.D. McCammon, K.B. Biggers, R.P. Phillips, Design of tactile sensing systems for dextrous manipulators. IEEE Control Syst. Mag. 8, 3–13 (1988)

    Article  Google Scholar 

  6. R.D. Howe, M.R. Cutkosky, Dynamic tactile sensing: perception of fine surface features with stress rate sensing. IEEE Trans. Robot. Autom. 9, 140–151 (1993)

    Article  Google Scholar 

  7. R.D. Howe, Tactile sensing and control of robotics manipulation. Adv. Robot. 8, 245–261 (1994)

    Article  Google Scholar 

  8. E. Cheung, V.L. Lumelsky, Proximity sensing in robot manipulation motion planning: system and implementation issues. IEEE Trans. Robot. Autom. 5(6), 740–751 (1989)

    Article  Google Scholar 

  9. E. Cheung, V.L. Lumelsky, A sensitive skin system for motion control of robot arm manipulators. Robot. Auton. Syst. 10, 9–32 (1992)

    Article  Google Scholar 

  10. D. Um, B. Stankovic, K. Giles, T. Hammond, V.L. Lumelsky, A modularized sensitive skin for motion planning in uncertain environments, in IEEE International Conference on Robotics and Automation, Leuven, Belgium (1998), pp. 7–112

    Google Scholar 

  11. T. Mukai, M. Onishi, T. Odashima, S. Hirano, Z. Luo, Development of the tactile sensor system of a human-interactive robot “RI-MAN”. IEEE Trans. Robot. 24(2), 505–512 (2008)

    Article  Google Scholar 

  12. Roboskin Project (2010). Available at: http://www.roboskin.eu/

  13. R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 26, 1–20 (2010)

    Article  Google Scholar 

  14. R.S. Dahiya, G. Metta, G. Cannata, M. Valle, Guest editorial special issue on robotic sense of touch. IEEE Trans. Robot. 27, 385–388 (2011)

    Article  Google Scholar 

  15. B.V. Jayawant, Tactile sensing in robotics. J. Phys. E, Sci. Instrum. 22, 684–692 (1989)

    Article  Google Scholar 

  16. M.H. Lee, H.R. Nicholls, Tactile sensing for mechatronics—a state of the art survey. Mechatronics 9, 1–31 (1999)

    Article  Google Scholar 

  17. M.E.H. Eltaib, J.R. Hewit, Tactile sensing technology for minimal access surgery—a review. Mechatronics 13, 1163–1177 (2003)

    Article  Google Scholar 

  18. J. Dargahi, S. Najarian, Advances in tactile sensors design/manufacturing and its impact on robotics applications—a review. Ind. Robot 32, 268–281 (2005)

    Article  Google Scholar 

  19. V. Maheshwari, R. Saraf, Tactile devices to sense touch on a par with a human finger. Angew. Chem., Int. Ed. Engl. 47, 7808–7826 (2008)

    Article  Google Scholar 

  20. P. Puangmali, K. Althoefer, L.D. Seneviratne, D. Murphy, P. Dasgupta, State-of-the-art in force and tactile sensing for minimally invasive surgery. IEEE Sens. J. 8, 371–381 (2008)

    Article  Google Scholar 

  21. M.R. Cutkosky, R.D. Howe, W. Provancher, Force and tactile sensors, in Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin, 2008), pp. 455–476

    Chapter  Google Scholar 

  22. D. De Rossi, E.P. Scilingo, Skin-like sensor arrays, in Encyclopedia of Sensors, vol. X, ed. by C.A. Grimes, E.C. Dickey, M.V. Pishko (American Scientific Publishers, Valencia, 2006), pp. 1–22

    Google Scholar 

  23. P. Svyatoslav, Touch screen control and calibration—four-wire, resistive. Application Note AN2173, Cypress Microsystems (2004)

    Google Scholar 

  24. H. Zhang, E. So, Hybrid resistive tactile sensing. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 32(1), 57–65 (2002)

    Article  MATH  Google Scholar 

  25. K. Weiss, H. Worn, Tactile sensor system for an anthropomorphic robotic hand, in IEEE International Conference on Manipulation and Grasping, Genoa, Italy (2004)

    Google Scholar 

  26. D.J. Beebe, A.S. Hsieh, D.D. Denton, R.G. Radwin, A silicon force sensor for robotics and medicine. Sens. Actuators A, Phys. 50, 55–65 (1995)

    Article  Google Scholar 

  27. M.R. Wolffenbuttel, P.P.L. Regtien, Polysilicon bridges for the realization of tactile sensors. Sens. Actuators A, Phys. A2(1–3), 257–264 (1991)

    Article  Google Scholar 

  28. B.J. Kane, M.R. Cutkosky, G.T.A. Kovacs, A traction stress sensor array for use in high-resolution robotic tactile imaging. J. Microelectromech. Syst. 9(4), 425–434 (2000)

    Article  Google Scholar 

  29. FSR Sensors, Interlink Electronics Inc. (2008). Available at: http://www.interlinkelectronics.com

  30. H. Takao, K. Sawada, M. Ishida, Monolithic silicon smart tactile image sensor with integrated strain sensor array on pneumatically swollen single-diaphragm structure. IEEE Trans. Electron Devices 53(5), 1250–1259 (2006)

    Article  Google Scholar 

  31. M. Shimojo, A. Namiki, M. Ishikawa, R. Makino, K. Mabuchi, A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sens. J. 4(5), 589–596 (2004)

    Article  Google Scholar 

  32. H. Liu, P. Meusel, G. Hirzinger, A tactile sensing system for the DLR three-finger robot hand, in International Symposium on Measurement and Control in Robotics (1995), pp. 91–96

    Google Scholar 

  33. M.A. Diftler, R. Platt Jr., C.J. Culbert, R.O. Ambrose, W.J. Bluethmann, Evolution of the NASA/DARPA robonaut control system, in IEEE International Conference on Robotics and Automation (2003), pp. 2543–2548

    Google Scholar 

  34. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 101(27), 9966–9970 (2004)

    Article  Google Scholar 

  35. H. Alirezaei, A. Nagakubo, Y. Kuniyoshi, A highly stretchable tactile distribution sensor for smooth surfaced humanoids, in 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, USA (2007)

    Google Scholar 

  36. Y. Kato, T. Mukai, T. Hayakawa, T. Shibata, Tactile sensor without wire and sensing element in the tactile region based on EIT method, in IEEE Sensors Conference (2007), pp. 792–795

    Google Scholar 

  37. D.S. Tawil, D. Rye, M. Velonaki, Improved image reconstruction for an EIT-based sensitive skin with multiple internal electrodes. IEEE Trans. Robot. 27(3), 425–435 (2011)

    Article  Google Scholar 

  38. Peratech Ltd., UK Patent PCT/GB98/00206 (WO 98/33193) Available at: http://www.peratech.co.uk

  39. H.-K. Lee, S.-I. Change, E. Yoon, A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment. J. Microelectromech. Syst. 15(6), 1681–1686 (2006)

    Article  Google Scholar 

  40. P.A. Schmidt, E. Mael, R.P. Wurtz, A sensor for dynamic tactile information with applications in human–robot interaction & object exploration. Robot. Auton. Syst. 54, 1005–1014 (2006)

    Article  Google Scholar 

  41. RoboTouch (2007). Available at: http://www.pressureprofile.com

  42. AD7147: CapTouchTM (2008). Available at: http://www.analog.com

  43. M. Maggiali, G. Cannata, P. Maiolino, G. Metta, M. Randazzao, G. Sandini, Embedded tactile sensor modules, in 11th Mechatronics Forum Biennial International Conference, Limerick, Ireland (2008)

    Google Scholar 

  44. Available at: http://www.soton.ac.uk/~rmc1/robotics/artactile.htm

  45. M. Ohka, H. Kobayashi, J. Takata, Y. Mitsuya, Sensing precision of an optical three-axis tactile sensor for a robotic finger, in 15th International Symposium on Robot and Human Interactive Communication “RO-MAN” (2006), pp. 214–219

    Chapter  Google Scholar 

  46. Y. Ohmura, Y. Kuniyoshi, A. Nagakubo, Conformable and scalable tactile sensor skin for curved surfaces, in IEEE International Conference on Robotics and Automation, Orlando, Florida, USA (2006)

    Google Scholar 

  47. E.M. Reimer, L. Danisch, Pressure sensor based on illumination of a deformable integrating cavity. U.S. Patent 5,917,180 (1999)

    Google Scholar 

  48. H. Yussof, J. Takata, M. Ohka, Measurement principles of optical three-axis tactile sensor and its application to robotic fingers system, in Sensors: Focus on Tactile, Force and Stress Sensors, ed. by J.G. Rocha, S. Lanceros-Mendez (I-Tech Publishers, Vienna, 2008), pp. 123–142

    Google Scholar 

  49. J.-S. Heo, J.-H. Chung, J.-J. Lee, Tactile sensor arrays using fiber Bragg grating sensors. Sens. Actuators A, Phys. 126, 312–327 (2006)

    Article  Google Scholar 

  50. V. Maheshwari, R. Saraf, High-resolution thin-film device to sense texture by touch. Science 312, 1501–1504 (2006)

    Article  Google Scholar 

  51. J. Winger, K.-M. Lee, Experimental investigation of a tactile sensor based on bending losses in fiber optics, in Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, North Carolina, USA (1988), pp. 754–759

    Google Scholar 

  52. J.-S. Heo, J.-Y. Kim, J.-J. Lee, Tactile sensors using the distributed optical fiber sensors, in Proceedings of the 3rd International Conference on Sensing Technology (2008), pp. 486–490

    Google Scholar 

  53. T.J. Nelson, R.B. Van Dover, S. Jin, S. Hackwood, G. Beni, Shear-sensitive magnetoresistive robotic tactile sensor. IEEE Trans. Magn. Mag-22(5), 394–396 (1986)

    Article  Google Scholar 

  54. W.C. Nowlin, Experimental results on Bayesian algorithms for interpreting compliant tactile sensing data, in IEEE International Conference on Robotics and Automation, Sacramento, California, USA (1991)

    Google Scholar 

  55. E. Torres-Jara, I. Vasilescu, R. Coral, A soft touch: compliant tactile sensors for sensitive manipulation. Technical report, CSAIL, Massachusetts Institute of Technology (2006)

    Google Scholar 

  56. E. Torres-Jara, Sensitive manipulation. Ph.D. thesis, Massachusetts Institute of Technology (2007). http://hdl.handle.net/1721.1/36371

  57. R.-C. Luo, F. Wang, Y. Liu, An imaging tactile sensor with magnetorestrictive transduction, in Robot Sensors, vol. 2, ed. by A. Pugh (Springer, Berlin 1985), pp. 113–122

    Google Scholar 

  58. S. Ando, H. Shinoda, Ultrasonic emission tactile sensing. IEEE Control Syst. Mag. 15(1), 61–69 (1995)

    Article  Google Scholar 

  59. S. Ando, H. Shinoda, A. Yonenaga, J. Terao, Ultrasonic six-axis deformation sensing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(4), 1031–1045 (2001)

    Article  Google Scholar 

  60. R.S. Dahiya, M. Valle, G. Metta, L. Lorenzelli, POSFET based tactile sensor arrays, in IEEE ICECS’07: The 14th International Conference on Electronics, Circuits and Systems, Marrakech, Morocco (2007), pp. 1075–1078

    Chapter  Google Scholar 

  61. R.S. Dahiya, M. Valle, L. Lorenzelli, Spice model of lossy piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 387–396 (2009)

    Article  Google Scholar 

  62. S. Omata, Y. Murayama, C.E. Constantinou, Real time robotic tactile sensor system for the development of the physical properties of biomaterials. Sens. Actuators A, Phys. 112(2–3), 278–285 (2004)

    Article  Google Scholar 

  63. G.M. Krishna, K. Rajanna, Tactile sensor based on piezoelectric resonance. IEEE Sens. J. 4(5), 691–697 (2004)

    Article  Google Scholar 

  64. H. Shinoda, K. Matsumoto, S. Ando, Tactile sensing based on acoustic resonance tensor cell, in Proceedings of TRANSDUCERS 1997, International Conference Solid-State Sensors and Actuators (1997), pp. 129–132

    Chapter  Google Scholar 

  65. K. Nakamura, H. Shinoda, A tactile sensor instantaneously evaluating friction coefficients, in Proceedings of TRANSDUCERS 1997, International Conference Solid-State Sensors and Actuators (1997), pp. 1430–1433

    Google Scholar 

  66. J. Dargahi, M. Parameswaran, S. Payandeh, A micromachined piezoelectric tactile sensor for an endoscopic grasper—theory, fabrication and experiments. J. Microelectromech. Syst. 9(3), 329–335 (2000)

    Article  Google Scholar 

  67. C. Domenici, D. De Rossi, A stress-component-selective tactile sensor array. Sens. Actuators A, Phys. 13, 97–100 (1992)

    Article  Google Scholar 

  68. P. Dario, G. Buttazzo, An anthropomorphic robot finger for investigating artificial tactile perception. Int. J. Robot. Res. 6(3), 25–48 (1987)

    Article  Google Scholar 

  69. K. Hosoda, Y. Tada, M. Asada, Anthropomorphic robotic soft fingertip with randomly distributed receptors. Robot. Auton. Syst. 54, 104–109 (2006)

    Article  Google Scholar 

  70. A.M. Taylor, D.M. Pollet, A. Hosseini-Sianaki, C.J. Varley, Advances in an electrorheological fluid based tactile array. Displays 18, 135–141 (1998)

    Article  Google Scholar 

  71. R.M. Voyles, G. Fedder, P.K. Khosla, Design of a modular tactile sensor and actuator based on an electrorheological gel, in IEEE International Conference on Robotics and Automation, USA, vol. 1 (1996), pp. 13–17

    Google Scholar 

  72. G.L. Kenaley, M.R. Cutkosky, Electrorheological fluid-based robotic fingers with tactile sensing, in IEEE International Conference on Robotics and Automation, USA, vol. 1 (1989), pp. 132–136

    Google Scholar 

  73. J.D. Carlson, S.P. Koester, Magnetically-controllable active haptic interface system and apparatus. U.S. Patent 6,283,859 B1

    Google Scholar 

  74. E.P. Scilingo, N. Sgambelluri, D. De Rossi, A. Bicchi, Haptic displays based on magnetorheological fluids: design, realization and psychophysical validation, in The 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’03) (2003), p. 10

    Chapter  Google Scholar 

  75. Y. Liu, R.I. Davidson, P.M. Taylor, J.D. Ngu, J.M.C. Zarraga, Single cell magnetorheological fluid based tactile displays. Displays 26, 29–35 (2005)

    Article  Google Scholar 

  76. Pressure sensitive ink (2008). Available at: http://www.tekscan.com/

  77. R. Kageyama, S. Kagami, M. Inaba, H. Inoue, Development of soft and distributed tactile sensors and the application to a humanoid robot, in IEEE International Conference on Systems, Man, & Cybernetics, vol. 2 (1999), pp. 981–986

    Google Scholar 

  78. K.B. Shimoga, A.A. Goldenberg, Soft materials for robot fingers, in IEEE International Conference on Robotics and Automation, Nice, France (1992), pp. 1300–1305

    Google Scholar 

  79. H.S. Nalwa, Ferroelectric Polymers: Chemistry, Physics, and Applications (Marcel Dekker, Inc., New York, 1995)

    Google Scholar 

  80. A.J. Lovinger, Ferroelectric polymers. Science 220(4602), 1115–1121 (1983)

    Article  Google Scholar 

  81. J.R. Flanagan, A.M. Wing, Modulation of grip force with load force during point-to-point arm movements. Exp. Brain Res. 95, 131–143 (1993)

    Article  Google Scholar 

  82. D. De Rossi, C. Domenici, Piezoelectric properties of dry human skin. IEEE Trans. Electr. Insul. EI-21(3), 511–517 (1986)

    Article  Google Scholar 

  83. E.S. Kolesar, C.S. Dyson, R.R. Reston, R.C. Fitch, D.G. Ford, S.D. Nelms, Tactile integrated circuit sensor realized with a piezoelectric polymer, in 8th IEEE International Conference on Innovative Systems in Silicon, Austin, Texas, USA (1996), pp. 372–381

    Google Scholar 

  84. B. Choi, H.R. Choi, S. Kang, Development of tactile sensor for detecting contact force and slip, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2005), pp. 2638–2643

    Chapter  Google Scholar 

  85. E.S. Kolesar, R.R. Reston, D.G. Ford, R.C. Fitch, Multiplexed piezoelectric polymer tactile sensor. J. Robot. Syst. 9(1), 37–63 (1992)

    Article  Google Scholar 

  86. Y. Yamada, T. Maeno, I. Fujimoto, T. Morizono, Y. Umetani, Identification of incipient slip phenomena based on the circuit output signals of PVDF film strips embedded in artificial finger ridges, in SICE Annual Conference (2002), pp. 3272–3277

    Google Scholar 

  87. R. Strümpler, J. Glatz-Reichenbach, Conducting polymer composites. J. Electroceram. 3(4), 329–346 (1999)

    Article  Google Scholar 

  88. D. Staufer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1992)

    Google Scholar 

  89. V.I. Roldughin, V.V. Vysotskii, Percolation properties of metal-filled polymer films, structure and mechanics of conductivity. Prog. Org. Coat. 39, 81–100 (2000)

    Article  Google Scholar 

  90. J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003)

    Article  Google Scholar 

  91. D. Bloor, K. Donnelly, P.J. Hands, P. Laughlin, D. Lussey, A metal-polymer composite with unusual properties. J. Phys. D, Appl. Phys. 38, 2851–2860 (2005)

    Article  Google Scholar 

  92. R. Walker, Developments in dextrous hands for advanced robotic applications, in 10th International Symposium on Robotics and Applications (2004)

    Google Scholar 

  93. Shadow hand. Available at: http://www.shadowrobot.com

  94. L. Flandin, G. Bidan, Y. Brechet, J.Y. Cavaille, New nanocomposite materials made of an insulating matrix and conductive fillers: processing and properties. Polym. Compos. 21(2), 165–173 (2000)

    Article  Google Scholar 

  95. S.-L. Yu, D.-R. Chang, L.-C. Tsao, W.-P. Shih, P.-Z. Chang, Porous nylon with electro-active dopants as flexible sensors and actuators, in MEMS 2008. IEEE 21st International Conference on Micro Electro Mechanical Systems (2008), pp. 908–911

    Chapter  Google Scholar 

  96. X. Chen, S. Yang, M. Hasegawa, K. Kawabe, S. Motojima, Tactile microsensor elements prepared from arrayed superelastic carbon microcoils. Appl. Phys. Lett. 87 054101, (2005)

    Article  Google Scholar 

  97. L. Chen, G. Chen, L. Lu, Piezoresistive behaviour study on finger-sensing silicone rubber/graphite nanosheet nanocomposites. Adv. Funct. Mater. 17, 898–904 (2007)

    Article  Google Scholar 

  98. O. Kerpa, K. Weiss, H. Wörn, Development of a flexible tactile sensor system for a humanoid robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, USA (2003), pp. 1–6

    Google Scholar 

  99. L. Wang, T. Ding, P. Wang, Thin flexible pressure sensor array based on carbon black/silicone rubber nanocomposite. IEEE Sens. J. 9(9), 1130–1135 (2009)

    Article  MathSciNet  Google Scholar 

  100. M.W. Strohmayr, H.P. Saal, A.H. Potdar, P. van der Smagt, The DLR touch sensor I: a flexible tactile sensor for robotic hands based on a crossed-wire approach, in The 2010 IEEE/RSJ International Conference on Intelligent Robotics and Systems, Taipei, Taiwan (2010), pp. 897–903

    Chapter  Google Scholar 

  101. J.-C. Huang, Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 21(4), 299–313 (2002)

    Article  Google Scholar 

  102. A.Y. Cao, P.L. Dickrell, W.G. Sawyer, M.N. Ghasemi-Nejhad, P.M. Ajayan, Super-compressible foam-like carbon nanotube films. Science 310, 1307–1310 (2005)

    Article  Google Scholar 

  103. J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003)

    Article  Google Scholar 

  104. J. Engel, J. Chen, N. Chen, S. Pandya, C. Liu, Multi-walled carbon nanotube filled conductive elastomers: materials and application to micro transducers, in MEMS 2006: The 19th IEEE International Conference on Micro Electro Mechanical Systems, Taipei, Taiwan (2006), pp. 246–249

    Google Scholar 

  105. B.S. Chiou, A.R. Lankford, P.E. Schoen, Modifying tubule distribution in tubule-filled composites by using polyurethane–polydimethylsiloxane interpenetrating polymer networks. J. Appl. Polym. Sci. 89, 1032–1038 (2003)

    Article  Google Scholar 

  106. H. Chia Hua, S. Wang-Shen, H. Chih-Fan, L. Chia-Min, F. Weileun, Y. Fu-Liang, A flexible, highly-sensitive, and easily-fabricated carbonnanotubes tactile sensor on polymer substrate, in 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Shanghai, China (2010), pp. 1388–1391

    Google Scholar 

  107. Y.-T. Lai, W.-C. Kuo, Y.-J. Yang, A tactile sensing array with tunable sensing ranges using liquid crystal and carbon nanotubes composites, in The 24th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Cancun, Mexico (2011), pp. 553–556

    Google Scholar 

  108. C. Liu, Recent developments in polymer MEMS. Adv. Mater. 19, 3783–3790 (2007)

    Article  Google Scholar 

  109. A. Bonfiglio, D. De Rossi, T. Kirstein, I.R. Locher, F. Mameli, R. Paradiso, G. Vozzi, Organic field effect transistors for textile applications. IEEE Trans. Inf. Technol. Biomed. 9(3), 319–324 (2005)

    Article  Google Scholar 

  110. Y. Osada, J.-P. Gong, Soft and wet materials: polymer gels. Adv. Mater. 10(11), 827–837 (1998)

    Article  Google Scholar 

  111. K. Sawahata, J.P. Gong, Y. Osada, Soft and wet touch-sensing system made of hydrogel. Macromol. Rapid Commun. 16, 713–716 (1995)

    Article  Google Scholar 

  112. N. Wettels, V.J. Santos, R.S. Johansson, G.E. Loeb, Biomimetic tactile sensor array. Adv. Robot. 22, 829–849 (2008)

    Article  Google Scholar 

  113. B.L. Gray, R.S. Fearing, A surface micromachined microtactile sensor array, in International Conference on Robotics and Automation, Minneapolis, Minnesota, USA (1996)

    Google Scholar 

  114. Z. Chu, P.M. Sarro, S. Middelhoek, Silicon three-axial tactile sensor. Sens. Actuators A, Phys. 54, 505–510 (1996)

    Article  Google Scholar 

  115. M. Leineweber, G. Pelz, M. Schmidt, H. Kappert, G. Zimmer, New tactile sensor chip with silicone rubber cover. Sens. Actuators A, Phys. 84, 236–245 (2000)

    Article  Google Scholar 

  116. K. Suzuki, K. Najafi, K.D. Wise, A 1024-element high-performance silicon tactile imager. IEEE Trans. Electron Devices 37(8), 1852–1860 (1990)

    Article  Google Scholar 

  117. H.-K. Lee, S.-I. Chang, E. Yoon, A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment. J. Microelectromech. Syst. 15(6), 1681–1686 (2006)

    Article  Google Scholar 

  118. U. Paschen, M. Leineweber, J. Amelung, M. Schmidt, G. Zimmer, A novel tactile sensor system for heavy load applications based on an integrated capacitive pressure sensor. Sens. Actuators A, Phys. 68, 294–298 (1998)

    Article  Google Scholar 

  119. M. Adam, E. Vazsonyi, I. Barsony, C.S. Ducso, Three dimensional single crystalline force sensor by porous Si micromachining, in IEEE Sensors (2004), pp. 501–504

    Google Scholar 

  120. M.R. Wolffenbuttel, P.P.L. Regtien, Design considerations for a silicon capacitive tactile cell. Sens. Actuators A, Phys. A24(3), 187–190 (1990)

    Article  Google Scholar 

  121. M.R. Wolffenbuttel, P.P.L. Regtien, Polysilicon bridges for the realization of tactile sensors. Sens. Actuators A, Phys. 26, 257–264 (1991)

    Article  Google Scholar 

  122. E.-S. Hwang, J.-h. Seo, Y.-J. Kim, A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics. J. Microelectromech. Syst. 16(3), 556–563 (2007)

    Article  Google Scholar 

  123. F. Jiang, G.-B. Lee, Y.-C. Tai, C.-M. Ho, A flexible micromachined based shear-stress sensor array and its applications to separation-point detection. Sens. Actuators A, Phys. 79(3), 194–203 (2000)

    Article  Google Scholar 

  124. J. Egnel, J. Chen, Z. Fan, C. Liu, Polymer micromachined multimodal tactile sensors. Sens. Actuators A, Phys. 117, 50–61 (2005)

    Article  Google Scholar 

  125. E.S. Kolesar, C.S. Dyson, Object imaging with a piezoelectric robotic tactile sensor. J. Microelectromech. Syst. 4(2), 87–96 (1995)

    Article  Google Scholar 

  126. I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwodiauer, S. Bauer, S.P. Lacour, S. Wagner, Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones. Appl. Phys. Lett. 89, 073501 (2006)

    Article  Google Scholar 

  127. R.S. Dahiya, M. Valle, G. Metta, Development of fingertip tactile sensing chips for humanoid robots, in 5th IEEE International Conference on Mechatronics, Malaga, Spain (2009), pp. 1–6

    Chapter  Google Scholar 

  128. R.S. Dahiya, G. Metta, M. Valle, L. Lorenzelli, A. Adami, Piezoelectric oxide semiconductor field effect transistor touch sensing devices. Appl. Phys. Lett. 95(3), 034105 (2009)

    Article  Google Scholar 

  129. S.C.B. Mannsfeld, B.C.K. Tee, R.M. Stoltenberg, C.V.H.H. Chen, S. Barman, B.V.O. Muir, A.N. Sokolov, C. Reese, Z. Bao, Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010)

    Article  Google Scholar 

  130. R.G. Swartz, J.D. Plummer, Integrated silicon-PVF2 acoustic transducer arrays. IEEE Trans. Electron Devices 26(12), 1920–1932 (1979)

    Article  Google Scholar 

  131. R.S. Dahiya, M. Valle, G. Metta, L. Lorenzelli, C. Collini, Tactile sensor arrays for humanoid robot, in IEEE PRIME’07: The 3rd International Conference on Ph.D. Research in Microelectronics and Electronics, Bordeaux, France (2007), pp. 201–204

    Chapter  Google Scholar 

  132. D.L. Polla, W.T. Chang, R.S. Muller, R.M. White, Integrated zinc oxide-on-silicon tactile-sensor array, in International Electron Devices Meeting (1985), pp. 133–136

    Google Scholar 

  133. H. Ishiwara, Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors. Curr. Appl. Phys. 9, S2–S6 (2009)

    Article  Google Scholar 

  134. A. Adami, R.S. Dahiya, C. Collini, D. Cattin, L. Lorenzelli, POSFET touch sensor with on-chip electronic module for signal conditioning, in TRANSDUCERS 2011: The 16th IEEE International Conference on Solid-State Sensors, Actuators and Microsystem, Beijing, China (2011), pp. 1982–1985

    Chapter  Google Scholar 

  135. A. Adami, R.S. Dahiya, C. Collini, D. Cattin, L. Lorenzelli, POSFET touch sensor with CMOS integrated signal conditioning electronics. Sens. Actuators A, Phys. (2012). doi:10.1016/j.sna.2012.02.046

    MATH  Google Scholar 

  136. N. Cauna, Nature and functions of the papillary ridges of the digital skin. Anat. Rec. 119, 449–468 (1954)

    Article  Google Scholar 

  137. J. Scheibert, S. Leurent, A. Prevost, G. Debregeas, The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2009)

    Article  Google Scholar 

  138. R.S. Dahiya, M. Gori, Probing with and into fingerprints. J. Neurophysiol. 104, 1–3 (2010)

    Article  Google Scholar 

  139. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

    Article  Google Scholar 

  140. S. Henning, Reliability of organic field-effect transistors. Adv. Mater. 21, 3859–3873 (2009)

    Article  Google Scholar 

  141. A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata, G. Metta, Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Trans. Robot. 27(3), 389–400 (2011)

    Article  Google Scholar 

  142. P. Mittendorfer, G. Cheng, Humanoid multimodal tactile-sensing modules. IEEE Trans. Robot. 27(3), 401–410 (2011)

    Article  Google Scholar 

  143. V.L. Lumelsky, M.S. Shur, S. Wagner, Sensitive skin. IEEE Sens. J. 1(1), 41–51 (2001)

    Article  Google Scholar 

  144. R.J. De Souza, K.D. Wise, A very high density bulk micromachined capacitive tactile imager, in IEEE International Conference on Solid-State Sensors and Actuators (TRANSDUCERS), Chicago, USA (1997), pp. 1473–1476

    Chapter  Google Scholar 

  145. M.H. Raibert, An all digital VLSI tactile array sensor, in IEEE International Conference on Robotics and Automation, vol. 1 (1984), pp. 314–319

    Google Scholar 

  146. K. Suzuki, K. Najafi, K.D. Wise, A 1024-element high-performance silicon tactile imager, in International Electron Devices Meeting (1988), pp. 674–677

    Google Scholar 

  147. S. Sugiyama, K. Kawahata, M. Yoneda, I. Igarashi, Tactile image detection using a 1 K-element silicon pressure array. Sens. Actuators A, Phys. A21–A23, 397–400 (1990)

    Google Scholar 

  148. L. Liu, X. Zheng, L. Zhijian, An array tactile sensor with piezoresistive single-crystal silicon diaphragm. Sens. Actuators A, Phys. 32, 193–196 (1993)

    Article  Google Scholar 

  149. Y. Audet, G.H. Chapman, Design of a large area magnetic field sensor array, in IEEE International Conference on Wafer Scale Integration, San Francisco, USA (1994), pp. 272–281

    Google Scholar 

  150. F. Castelli, An integrated tactile-thermal robot sensor with capacitive tactile array. IEEE Trans. Ind. Appl. 38(1), 85–90 (2002)

    Article  Google Scholar 

  151. G. Hellard, A.R. Russell, A robust, sensitive and economical tactile sensor for robotic manipulator, in Australian Conference on Robotics and Automation, Auckland (2002), pp. 100–104

    Google Scholar 

  152. Z. Wen, Y. Wu, Z. Zhang, S. Xu, S. Huang, Y. Li, Development of an integrated vacuum microelectronic tactile sensor array. Sens. Actuators A, Phys. 103, 301–306 (2003)

    Article  Google Scholar 

  153. B. Choi, S. Kang, H. Choi, Development of fingertip tactile sensor for detecting normal force and slip, in International Conference on Control, Automation and Systems, Gyeong Gi, Korea (2005)

    Google Scholar 

  154. R.S. Dahiya, L. Lorenzelli, G. Metta, M. Valle, Development of fingertip tactile sensing chips for humanoid robots, in IEEE-ISCAS 2010: The IEEE International Symposium on Circuits and Systems, Paris, France (2010), pp. 1–4

    Google Scholar 

  155. J.H. Shan, T. Mei, L. Sun, D.Y. Kong, Z.Y. Zhang, L. Ni, M. Meng, J.R. Chu, The design and fabrication of a flexible three-dimensional force sensor skin, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2005), pp. 1818–1823

    Chapter  Google Scholar 

  156. J.-H. Kim, W.-C. Choi, H.-J. Kwon, Development of tactile sensor with functions of contact force and thermal sensing for attachment to intelligent robot finger tip, in IEEE Sensors, Daegu, Korea (2006), pp. 1468–1472

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dahiya, R.S., Valle, M. (2013). Tactile Sensing Technologies. In: Robotic Tactile Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0579-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0579-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0578-4

  • Online ISBN: 978-94-007-0579-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics