Skip to main content

Thermodynamic Properties of Actinides and Actinide Compounds

  • Chapter
The Chemistry of the Actinide and Transactinide Elements

Abstract

The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, B. M., Brody, B. B., Davidson, N. R., Hagemann, F., Karle, I., Katz, J. J., and Wolf, M (1949) in The Transuranium Element-Collected Papers (eds. G. T. Seaborg, J. J. Katz, and W. M. Manning), McGraw-Hill, New York, pp. 740–58.

    Google Scholar 

  • Ackermann, R. J., Faircloth, R. L., Rauh, E. G., and Thorn, R. J. (1966a) J. Inorg. Nucl. Chem., 28, 111–18.

    CAS  Google Scholar 

  • Ackermann, R. J., Faircloth, R. L., and Rand, M. H. (1966b) J. Phys. Chem., 70, 3698–706.

    CAS  Google Scholar 

  • Ackermann, R. J. and Rauh, E. G. (1973a) Rev. Hautes Temp. Refract. Fr., 15, 259–80.

    Google Scholar 

  • Ackermann, R. J. and Rauh, E. G. (1973b) High Temp. Sci., 5, 462–73.

    Google Scholar 

  • Ackermann, R. J. and Rauh, E. G. (1975) J. Chem. Phys., 62, 108–12.

    CAS  Google Scholar 

  • Akabori, M., Kobayashi, F., Hayashi, H., Ogawa, T., Huntelaar, M. E., Booij, A. S., and Van Vlaanderen, P. (2002) J. Chem. Thermodyn.. 34, 1461–6.

    CAS  Google Scholar 

  • Ali, M., Mishra, R., Bharadwaj, S. R., Kerkar, A. S., Dharwadkar, S. R., and Das, D. (2001) J. Nucl. Mater., 299, 165–70.

    CAS  Google Scholar 

  • Apelblatt, A. and Sahar, A. (1975) JCS Faraday Trans. I, 71, 1667–70.

    Google Scholar 

  • Archibong, E. F. and Ray, A. K. (2000) J. Mol. Struct. (THEOCHEM), 530, 165–70.

    CAS  Google Scholar 

  • Arita, Y., Sasajima, N., and Matsui, T. (1997) J. Nucl. Mater., 247, 232–4.

    CAS  Google Scholar 

  • Arkhipov, V. A., Gutina, E. A., Dobretsov, V. N., and Ustinov, V. A. (1974) Sov. Radiochem., 16, 122–4.

    Google Scholar 

  • Bakker, K., Cordfunke, E. H. P., Konings, R. J. M., and Schram, R. P. C. (1997) J. Nucl. Mater., 250, 1–12.

    CAS  Google Scholar 

  • Barin, I. and Knacke, O. (1973) Thermochemical Properties of Inorganic Substances, Springer Verlag, Berlin.

    Google Scholar 

  • Barrett, S. A., Jacobson, A. J., Tofield, B. C., and Fender, B. E. F. (1982) Acta Crystal-logr., B38, 2775–8.

    CAS  Google Scholar 

  • Bartscher, W. and Sari, C. (1986) J. Nucl. Mater., 140, 91–3.

    CAS  Google Scholar 

  • Baes, C. F. Jr (1966) in Thermodynamics, vol. 1, IAEA, Vienna, pp. 409–33.

    Google Scholar 

  • Baes, C. F. Jr (1969) in Reprocessing of Nuclear Fuel, Conf. 690–801; USAEC, p. 617.

    Google Scholar 

  • Baes, C. F. Jr and Mesmer, R. E. (1976) The Hydrolysis of Cations, Wiley Interscience, New York.

    Google Scholar 

  • Bazhanov, V. I., Ezhov, Yu. S., and Komarov, S. A. (1990a) Zh. Strukt. Khim., 31, 152–3.

    CAS  Google Scholar 

  • Bazhanov, V. I., Komarov, S. A., Sevast’yanov, V. G., Popik, M., Kuznetsov, N. T., and Ezhov, Yu. S. (1990b) Vysochist. Veshchestva, 1, 109–10.

    Google Scholar 

  • Belov, A. N. and Semenov, G. A. (1980) Zh. Fiz. Khim., 54, 1537–41.

    CAS  Google Scholar 

  • Belyaev, Yu. I., Smirnov, N. L., and Taranov, A. P. (1979) Radiokhimiya, 21, 682–6.

    CAS  Google Scholar 

  • Besmann, T. M. and Lindemer, T. B. (1983) J. Am. Ceram. Soc., 66, 782–5.

    CAS  Google Scholar 

  • Besmann, T. M. and Lindemer, T. B. (1985) J. Nucl. Mater., 130, 489–504.

    CAS  Google Scholar 

  • Besmann, T. M. and Lindemer, T. B. (1986) J. Nucl. Mater., 137, 292–3.

    CAS  Google Scholar 

  • Bradbury, M. H. (1981) J. Less Common Metals, 78, 207–18.

    CAS  Google Scholar 

  • Brewer, L. (1970) Plutonium 1970 and Other Actinides, Nucl. Met. Ser. (AIME), 17, 650.

    Google Scholar 

  • Brewer, L. (1984) High Temp. Sci., 17, 1–30.

    Google Scholar 

  • Brickwedde, F. G., Hodge, H. J., and Scott, R. B. (1948) J. Chem. Phys., 16, 429–36.

    CAS  Google Scholar 

  • Brickwedde, F. G., Hodge, H. J., and Scott, R. B. (1951) in The Chemistry of Uranium (eds. J. J. Katz and E. Rabinowitch), Dover Publications, New York.

    Google Scholar 

  • Brooks, M. S. S., Johnson, B., and Skriver, H. L. (1984) in Handbook on the Chemistry and Physics of the Actinides (eds. A. J. Freeman and G. L. Lander), North-Holland, Amsterdam, pp. 153–270.

    Google Scholar 

  • Burnett, J. L. (1966) J. Inorg. Nucl. Chem., 28, 2454–6.

    CAS  Google Scholar 

  • Burns, J. B., Haire, R. G., and Peterson, J. R. (1998) J. Alloys Compds, 271–273, 676–9.

    Google Scholar 

  • Burriel, R., To, M., Zaniel, H., Westrum, E. F. Jr, Cordfunke, E. H. P., Muis, R. P., and Wijbenga, G. (1988) J. Chem. Thermodyn., 20, 815–23.

    CAS  Google Scholar 

  • Campbell, A. B. and Lemire, R. J. (1994) Atomic Energy of Canada Limited Report RC-1278, COG-I-94–399.

    Google Scholar 

  • Casalta, S. (1996) Etude des proprietes du systeme Am-O en vue de la transmutation de l’americium 241 en reacteur a neutrons rapides, Ph.D. Thesis, University Aix-Marseille I.

    Google Scholar 

  • Chereau, P., Dean, G., De Franco, M., and Gerdanian, P. (1977) J. Chem. Thermodyn., 9, 211–19.

    CAS  Google Scholar 

  • Chevalier, P.-Y., Fischer, E., and Cheynet, B. (2000) J. Nucl. Mater., 280, 136–50.

    CAS  Google Scholar 

  • Chikalla, T. D. and Eyring, L. (1967) J. Inorg. Nucl. Chem., 29, 2281–93.

    CAS  Google Scholar 

  • Chiotti, P. and Kately, J. A. (1969) J. Nucl. Mater., 32, 135–42.

    CAS  Google Scholar 

  • Chiotti, P., Akhachinskij, V. V., Ansara, I., and Rand, M. H. (1981) The chemical thermodynamics of actinide elements and compounds, part 5, The Actinide Binary Alloys, STI/PUB/424/5, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Cleveland, J. M. (1979) in Chemical Modeling in Aqueous Systems (ed. E. A. Jenne), (Am. Chem. Soc. Symp. Ser. 93), Washington, DC, pp. 321–38.

    Google Scholar 

  • Colinet, C. and Pasturel, A. (1994) in Handbook on the Chemistry of Rare Earths (eds. K. A. Gschneidner Jr, L. Eyring, G. H. Lander and G. R. Choppin), vol. 19, ch. 134.

    Google Scholar 

  • Conway, J. B. and Flagella, P. N. (1969) Report GEMP-1012, p. 61.

    Google Scholar 

  • Cordfunke, E. H. P. (1964) J. Phys. Chem., 68, 3353–6.

    CAS  Google Scholar 

  • Cordfunke, E. H. P. and O’Hare, P. A. G. (1978) The chemical thermodynamics of actinide elements and compounds, part 3, Miscellaneous Actinide Compounds, STI/PUB/424/3, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Cordfunke, E. H. P., Muis, R. P., and Prins, G. (1979) J. Chem. Thermodyn., 11, 819–23.

    CAS  Google Scholar 

  • Cordfunke, E. H. P. and Ouweltjes, W. (1981) J. Chem. Thermodyn., 13, 193–7.

    CAS  Google Scholar 

  • Cordfunke, E. H. P., Ouweltjes, W., and Prins, G. (1982) J. Chem. Thermodyn., 14, 495–502.

    CAS  Google Scholar 

  • Cordfunke, E. H. P., Muis, R. P., Ouweltjes, W., Flotow, H. E., and O’Hare, P. A.G. (1982) J. Chem. Thermodyn., 14, 313–22.

    CAS  Google Scholar 

  • Cordfunke, E. H. P. and Kubaschewski, O. (1984) Thermochim. Acta, 74, 235–45.

    CAS  Google Scholar 

  • Cordfunke, E. H. P., Muis, R. P., Wijbenga, G., Burriel, R., To, M., Zaniel, H., and Westrum, E. F. Jr (1985) J. Chem. Thermodyn., 17, 1035–44.

    CAS  Google Scholar 

  • Cordfunke, E. H. P., Konings, R. J. M., and Westrum, E. F. Jr (1989) J. Nucl. Mater., 167, 205–12.

    Google Scholar 

  • Cordfunke, E. H. P. and Konings, R. J. M. (1990) Thermochemical Data for Reactor Materials and Fission Products, Elsevier, Amsterdam.

    Google Scholar 

  • Cordfunke, E. H. P. and IJdo, D. J. W. (1994) J. Solid State Chem., 109, 272–6.

    CAS  Google Scholar 

  • Cordfunke, E. H. P., Booij, A. S., Smit-Groen, V. S., van Vlaanderen, P., and Ijdo, D. J. W. (1997) J. Solid State Chem., 131, 341–9.

    CAS  Google Scholar 

  • Cordfunke, E. H. P., Booij, A. S., and Huntelaar, M. E. (1999) J. Chem. Thermodyn., 31, 1337–45.

    CAS  Google Scholar 

  • Cordfunke, E. H. P. and Konings, R. J. M. (2001a) Thermochim. Acta, 375, 17–50.

    CAS  Google Scholar 

  • Cordfunke, E. H. P. and Konings, R. J. M. (2001b) Thermochim. Acta, 375, 51–64.

    CAS  Google Scholar 

  • Cordfunke, E. H. P. and Konings, R. J. M. (2001c) Thermochim. Acta, 375, 65–79.

    CAS  Google Scholar 

  • Cox, J. D., Wagman, D. D., and Medvedev, V. A. (1989) CODATA Key Values for Thermodynamics, Hemisphere, New York.

    Google Scholar 

  • Criss, C. M. and Cobble, R. W. (1964) J. Am. Chem. Soc., 86, 5385–9.

    CAS  Google Scholar 

  • Dash, S., Singh, Z., Prasad, R., and Venugopal, V. (2000) J. Nucl. Mater., 279, 84–90.

    CAS  Google Scholar 

  • David, F., Samhoun, K., Guillaumont, R., and Edelstein, N. (1978) J. Inorg. Nucl. Chem., 40, 69–74.

    CAS  Google Scholar 

  • David, F. (1986) in Handbook on the Chemistry of the Actinides (eds. A. J. Freeman and C. Keller), vol. 4, ch. 3.

    Google Scholar 

  • David, F. H. and Vokhmin, V. (2001) J. Phys. Chem. A, 105, 9704–9.

    CAS  Google Scholar 

  • David, F. H., Vokhmin, V., and Ionova, G. (2001) J. Mol. Liquids, 90, 45–62.

    CAS  Google Scholar 

  • David, F. H. and Vokhmin, V. (2002) J. Nucl. Sci. Technol., Suppl. 3, 286–9.

    Google Scholar 

  • De Boer, F. R., Boom, R., Matthens, W. C. M., and Miedema, A. R. (1988) Cohesion in Metals, Elsevier, Amsterdam.

    Google Scholar 

  • Dharwadkar, S. R., Tripathi, S. N., Karkhana, M. D., and Chandrasekharaiah, M. S. (1975) in Proc. Symp. on Thermodynamics of Nuclear Materials 1974, IAEA, Vienna, vol. II, pp. 455–65.

    Google Scholar 

  • Diakonov, I. I., Tagirov, B. R., and Ragnarsdottir, K. V. (1998a) Radiochim. Acta, 81, 107–16.

    CAS  Google Scholar 

  • Diakonov, I. I., Tagirov, B. R., and Ragnarsdottir, K. V. (1998b) Chem. Geol., 151, 327–47.

    CAS  Google Scholar 

  • Ebbinghaus, B. B. (1995) Report UCRL-JC-122278, Lawrence Livermore National Laboratory.

    Google Scholar 

  • Evans, J. H. and Mardon, P. G. (1959) J. Phys. Chem. Solids, 10, 311–18.

    CAS  Google Scholar 

  • Felmy, A. R., Rai, D., Schramke, J. A., and Ryan, J. L. (1989) Radiochim. Acta, 48, 29–35.

    CAS  Google Scholar 

  • Finch, R. J., Hawthorne, F. C., and Ewing, R. C. (1998) Can. Miner., 36, 831–45.

    CAS  Google Scholar 

  • Fink, J. K. (1982) Int. J. Thermophys., 3, 165–200.

    CAS  Google Scholar 

  • Fink, J. K. (2000) J. Nucl. Mater., 279, 1–18.

    CAS  Google Scholar 

  • Flotow, H. E. and Tetenbaum, M. (1981) J. Chem. Phys., 74, 5269–77.

    CAS  Google Scholar 

  • Flotow, H. E., Haschke, J. M., and Yamauchi, S. (1984) The chemical thermodynamics of actinide elements and compounds, Part 9, The Actinide Hydrides, STI/PUB/424/9, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Foster, K. W. (1953) Report MLM-901.

    Google Scholar 

  • Fournier, J. M. (1976) J. Phys. Chem. Solids, 37, 235–44.

    CAS  Google Scholar 

  • Fuger, J., Brown, D., and Easey, J. F. (1969) J. Chem. Soc. A, 2995–8.

    Google Scholar 

  • Fuger, J. and Brown, D. (1975) J. Chem. Soc., Dalton Trans., 225–31.

    Google Scholar 

  • Fuger, J. and Oetting, F. L. (1976) The chemical thermodynamics of actinide elements and compounds, part 2, The Actinide Aqueous Ions, STI/PUB/424/2, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Fuger, J., Bohet, J., Müller, W., Whittacker, B., and Brown, D. (1978) Inorg. Nucl. Chem. Lett., 14, 11–18.

    CAS  Google Scholar 

  • Fuger, J., Haire, R. G., and Peterson, J. R. (1981) J. Inorg. Nucl. Chem., 43, 3209–15.

    CAS  Google Scholar 

  • Fuger, J., Parker, V. B., Hubbard, W. N., and Oetting, F. L. (1983) The chemical thermodynamics of actinide elements and compounds, part 8, The Actinide Halides, STI/PUB/424/8, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Fuger, J., Haire, R. G., and Peterson, J. R. (1984) J. Less Common Metals, 98, 315–21.

    CAS  Google Scholar 

  • Fuger, J., Haire, R. G., Wilmarth, W. R., and Peterson, J. R. (1990) J. Less Common Metals, 158, 99–104.

    CAS  Google Scholar 

  • Fuger, J., Khodakovsky, I. L., Sergeyeva, E. I., Medvedev, V. A., and Navratil, J. D. (1992) The chemical thermodynamics of actinide elements and compounds, part 12, The Actinide Aqueous Inorganic Complexes, STI/PUB/424/12, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Fuger, J., Haire, R. G., and Peterson, J. R. (1993) J. Alloys Compds, 200, 181–5.

    CAS  Google Scholar 

  • Fusselman, S. P., Roy, J. J., Grimmet, D. L., Grantham, L. F., Krueger, C. L., Nabalek, C. R., Storvick, T. S., Inoue, T., Hijikata, T., Kinoshita, K., Sakamura, Y., Uozumi, K., Kawai, T., and Takahashi, N. (1999) J. Electrochem. Soc., 146, 2573–80.

    CAS  Google Scholar 

  • Gabelnick, S. D., Reedy, G. T., and Chasanov, M. G. (1974) J. Chem. Phys., 60, 1167.

    CAS  Google Scholar 

  • Gibby, R. L., McNeilly, C. E., and Chikalla, T. D. (1970) J. Nucl. Mater., 34, 299–306.

    CAS  Google Scholar 

  • Gibson, J. K. and Haire, R. G. (1988a) Thermochim. Acta., 133, 241–7.

    CAS  Google Scholar 

  • Gibson, J. K. and Haire, R. G. (1988b) J. Solid State Chem., 73, 524.

    CAS  Google Scholar 

  • Gibson, J. K. and Haire, R. G. (1990) J. Phys. Chem., 94, 935.

    CAS  Google Scholar 

  • Gibson, J. K. and Haire, R. G. (1992) J. Nucl. Mater., 195, 156–65.

    CAS  Google Scholar 

  • Gibson, J. K. (2003) J. Phys. Chem. A, 107, 7891–9.

    CAS  Google Scholar 

  • Gingerich, K. A. (1969) J. Chem. Phys., 67, 4433.

    Google Scholar 

  • Glushko, V. P., Medvedev, V. A., Bergman, G. A., Gurvich, L. V., Vorob’ev, A. F., Vasil’ev, V. P., Kolesov, V. P., Yungman, V. S., Reznutskij, L. R., Baibuz, V. F., Gal’chenko, G. L., and Yatzimirskij, K. B. (1978) Thermodynamic Constants Of Substances, Academy of Science Publishing House, Moscow.

    Google Scholar 

  • Gorokhov, L. N., Smirnov, V. K., and Khodeev, Yu. S. (1984) Russ. J. Phys. Chem., 58, 980–7.

    Google Scholar 

  • Gorokhov, L. N. and Sidorova, I. V. (1998) Russ. J. Phys. Chem., 72, 1038–42.

    Google Scholar 

  • Goudiakas, J., Haire, R. G., and Fuger, J. (1990) J. Chem. Thermodyn., 22, 577–87.

    CAS  Google Scholar 

  • Green, D. W. and Reedy, G. T. (1976) J. Chem. Phys., 65, 2921–7.

    CAS  Google Scholar 

  • Green, D. W. and Reedy, G. T. (1978a) J. Chem. Phys., 69, 544–51.

    CAS  Google Scholar 

  • Green, D. W. and Reedy, G. T. (1978b) J. Chem. Phys., 69, 552–5.

    CAS  Google Scholar 

  • Green, D. W. and Reedy, G. T. (1979) J. Mol. Spectrosc., 74, 423–34.

    CAS  Google Scholar 

  • Green, D. W. (1980) Int. J. Thermophys., 1, 61.

    CAS  Google Scholar 

  • Grenthe, I., Fuger, J., Konings, R. J. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, Cregu, C., and Wanner, H. (1992) Chemical Thermodynamics of Uranium (eds. H. Wanner and I. Forest), North Holland, Amsterdam.

    Google Scholar 

  • Grønvold, F., Drowart, J., and Westrum, E. F. Jr (1984) The chemical thermodynamics of actinide elements and compounds, part 4, The Actinide Chalcogenides (Excluding Oxides), STI/PUB/424/4, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Gross, P., Hayman, C., and Clayton, H. (1962) in Proc. Thermodyn. Nucl. Mater., IAEA, Vienna, pp. 653–65.

    Google Scholar 

  • Gross, P., Hayman, C., and Wilson, G. L. (1971) Monathsh. Chem., 102, 924–8.

    CAS  Google Scholar 

  • Gruen, D. M. and DeKock, C. W. (1967) J. Inorg. Nucl. Chem., 29, 2569.

    CAS  Google Scholar 

  • Gruen, D. M. (1976) Proc. Int. Symp. Molten Salts, Washington, DC, p. 204.

    Google Scholar 

  • Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D., and Rand, M. H. (2003) Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam.

    Google Scholar 

  • Gupta, S. K. and Gingerich, K. A. (1979) J. Chem. Phys., 71, 3072.

    CAS  Google Scholar 

  • Gupta, S. K. and Gingerich, K. A. (1980) J. Chem. Phys., 72, 2795.

    CAS  Google Scholar 

  • Haaland, A., Martinsen, K.-G., Swang, O., Volden, H., Booij, A. S., and Konings, R. J. M. (1995) J. Chem. Soc., Dalton Trans., 185–90.

    Google Scholar 

  • Haire, R. G. and Gibson, J. K. (1989) J. Chem. Phys., 91, 7085–96.

    CAS  Google Scholar 

  • Haire, R. G. (1994) J. Alloys Compds, 213/214, 185–91.

    CAS  Google Scholar 

  • Haire, R. G. and Eyring, L. (1994) Comparisons of the binary oxides, in Handbook of the Rare Earths, vol. 18 (eds. K. A. Gschneidner, L. Eyring, G. H. Lander, and G. R. Choppin), North-Holland, Amsterdam, 18: 413.

    Google Scholar 

  • Hall, R. O. A., Jeffery, A. J., Mortimer, M., and Spirlet, J. C. (1990) Report AERE- R-13490.

    Google Scholar 

  • Hall, R. O. A., Mortimer, M., Harding, S. R., and Spirlet, J. C. (1992) Report AEA-FS-0048H.

    Google Scholar 

  • Hall, R. O. A., Mortimer, M., and Spirlet, J. C. (1990) Report AERE-R-13768.

    Google Scholar 

  • Han, Y.-K. (2001) J. Comp. Chem., 22, 2010–221.

    CAS  Google Scholar 

  • Haschke, J. M., Allen, T. H., and Morales, L. A. (2001) J. Alloys Compds, 314, 78–84.

    CAS  Google Scholar 

  • Haschke, J. M. and Allen, T. H. (2002) J. Alloys Compds, 336, 124–30.

    CAS  Google Scholar 

  • Hayes, S. L., Thomas, J. K., and Pedicord, K. L. (1990) J. Nucl. Mater., 171, 300–18.

    CAS  Google Scholar 

  • Helean, K. B., Navrotsky, A., Vance, E. R., Carter, M. L., Ebbinghaus, B., Krikorian, O., Lian, J., Wang, L. M., and Catalano, J. G. (2002) J. Nucl. Mater., 303, 226–39.

    CAS  Google Scholar 

  • Helean, K. B., Navrotsky, A., Lumpkin, G. R., Colella, M., Lian, J., Ewing, R. C., Ebbinghaus, B., and Catalano, J. G. (2003) J. Nucl. Mater., 320, 231–44.

    CAS  Google Scholar 

  • Hiernaut, J. P., Hyland, G. J., and Ronchi, C. (1993) Int. J. Thermophys., 14, 609–18.

    CAS  Google Scholar 

  • Hiernaut, J. P. and Ronchi, R. (2004) J. Nucl. Mater., 334, 133–8.

    CAS  Google Scholar 

  • Hildenbrand, D. L., Gurvich, L. V., and Yungman, V. S. (1985) The chemical thermodynamics of actinide elements and compounds, part 13, The Gaseous Actinide Ions, STI/PUB/424/13, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Hildenbrand, D. L. (1988) Pure Appl. Chem., 60, 303–10.

    CAS  Google Scholar 

  • Hildenbrand, D. L. and Lau, K. H. (1990) J. Chem. Phys., 90, 5983.

    Google Scholar 

  • Hildenbrand, D. L. and Lau, K. H. (1991) J. Chem. Phys., 94, 1420.

    CAS  Google Scholar 

  • Hobart, D. E., Samhoun, K., and Peterson, J. R. (1982) Radiochim. Acta, 31, 139.

    CAS  Google Scholar 

  • Hobart, D. E., Varlashkin, P. G., Samhoun, K., Haire, R. G., and Peterson, J. R. (1983) Rev. Chim. Miner., 20, 817–27.

    CAS  Google Scholar 

  • Holley, C. E., Rand, M. H., and Storms, E. K. (1984) The chemical thermodynamics of actinide elements and compounds, part 6, The Actinide Carbides, STI/PUB/424/6, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Hovey, J. K. and Tremaine, P. R. (1986) Geochim. Cosmochim. Acta, 50, 453.

    CAS  Google Scholar 

  • Hovey, J. K., Nguyen-Trung, C., and Tremaine, P. R. (1989) Geochim. Cosmochim. Acta, 53, 1503–9.

    CAS  Google Scholar 

  • Hovey, J. K. (1997) J. Phys. Chem. B, 101, 4321.

    CAS  Google Scholar 

  • Huang, J., Yamawaki, M., Yamaguchi, K., Yasumoto, M., Sakurai, H., and Suzuki, Y. (1997a) J. Nucl. Mater., 247, 17–20.

    CAS  Google Scholar 

  • Huang, J., Yamawaki, M., Yamaguchi, K., Yasumoto, M, Sakurai, H., and Suzuki, Y. (1997b) J. Nucl. Mater., 248, 257–61.

    CAS  Google Scholar 

  • Hubener, S. and Zvara, I. (1982) Radiochim. Acta, 31, 89–94.

    Google Scholar 

  • Hughes-Kubatko, K.-A., Helean, K. B., Navrotsky, A., and Burns, P. C. (2003) Science, 302, 1191–3.

    CAS  Google Scholar 

  • Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., Kelley, K. K., and Wagman, D. D. (1973) Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, Ohio.

    Google Scholar 

  • Huntelaar, M. E., Booij, A. S., Ijdo, D., van Genderen, A., Akabori, M., Gaune- Escard, M., and Rycerz, L. (2002) J. Nucl. Sci. Technol., Suppl. 3, 599–602.

    Google Scholar 

  • IAEA (1965) Thermodynamic and Transport Properties of Uranium Dioxide and Related Phases, Technical Reports Series no. 39, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • IAEA (1967) The Plutonium-Oxygen and Uranium-Plutonium-Oxygen Systems: A Thermochemical Assessment, Technical Reports Series no. 79, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Johnson, G. K. (1979) J. Chem. Thermodyn., 11, 483–9.

    CAS  Google Scholar 

  • Johnson, G. K. (1985) J. Nucl. Mater., 130, 102–8.

    CAS  Google Scholar 

  • Johnson, I. (1975) Report ANL-RDP-26.

    Google Scholar 

  • Jones, L. H. and Ekberg, S. (1977) J. Chem. Phys., 67, 2591–8.

    CAS  Google Scholar 

  • Joubert, L. and Maldivi, P. (2001) J. Phys. Chem. A, 105, 9068–76.

    CAS  Google Scholar 

  • Jung, W.-G. and Kleppa, O. J. (1991) J. Chem. Thermodyn., 23, 147.

    CAS  Google Scholar 

  • Katz, J. J. and Rabinowitch, E. (1951) The Chemistry of Uranium, McGraw-Hill, New York.

    Google Scholar 

  • Kaufman, M. J., Muenter, J., and Klemperer, W. (1967) J. Chem. Phys., 47, 3365–70.

    CAS  Google Scholar 

  • Kim, K. C. and Mulford, R. N. (1990) J. Mol. Struct. (THEOCHEM), 207, 293.

    Google Scholar 

  • Kleinschmidt, P. D., Ward, J. W., and Haire, R. G. (1983) Proc. II Symp. on High Temperature Materials Chemistry (eds. Z. Munir and D. Cubiciotti), Electrochemical Society, Pennington, NJ, pp. 23–31.

    Google Scholar 

  • Kleinschmidt, P. D., Ward, J. W., and Haire, R. G. (1984) J. Phys. Chem., 81, 473.

    CAS  Google Scholar 

  • Kleinschmidt, P. D., and Ward, J. W. (1986) J. Less Common Metals, 121, 61.

    CAS  Google Scholar 

  • Kleinschmidt, P. D. (1988) J. Chem. Phys., 89, 6897.

    CAS  Google Scholar 

  • Konings, R. J. M., Booij, A. S., Kovács, A., Girichev, G. V., Giricheva, N. I., and Krasnova, O. G. (1996) J. Mol. Struct., 378, 121–31.

    CAS  Google Scholar 

  • Konings, R. J. M. and Hildenbrand, D. L. (1998) J. Alloys Compds, 271–273, 583–6.

    Google Scholar 

  • Konings, R. J. M. (2001a) J. Nucl. Mater., 295, 57–63.

    CAS  Google Scholar 

  • Konings, R. J. M. (2001b) J. Nucl. Mater., 298, 255–68.

    CAS  Google Scholar 

  • Konings, R. J. M. (2002) J. Nucl. Mater., 301, 223–6.

    CAS  Google Scholar 

  • Konings, R. J. M. (2003) J. Alloys Compds, 348, 38–42.

    CAS  Google Scholar 

  • Konings, R. J. M. and Kovács, A. (2003) in Handbook on the Physics and Chemistry of Rare Earths, vol. 33, ch. 213 (eds. K. A. Gschneidner Jr and J.-C. G. Bünzli, and V. K. Pecharsky) Elsevier, pp. 147–247.

    Google Scholar 

  • Konings, R. J. M. (2004a) J. Chem. Thermodyn., 36, 121–6.

    CAS  Google Scholar 

  • Konings, R. J. M. (2004b) www.f-elements.net.

  • Konings, R. J. M., van Miltenburg, J. C., and van Genderen, A. G. C. (2005) J. Chem. Thermodyn., 37 (2005), 1219–25.

    CAS  Google Scholar 

  • Kosyakov, V. N., Timofeev, G. A., Erin, I. A., Kopytov, V. V., and Andreev, V. J. (1977) Radiokhimiya, 19, 82.

    CAS  Google Scholar 

  • Kovács, A., Booij, A. S., Cordfunke, E. H. P., Kok-Scheele, A., and Konings, R. J. M. (1996) J. Alloys Compds, 241, 95–7.

    Google Scholar 

  • Kovács, A., Konings, R. J. M., and Nemcsok, D. S. (2003) J. Alloys Compds, 353, 128–32.

    Google Scholar 

  • Krestov, G. A. (1972) Thermochemistry of Compounds of Rare-Earth and Actinide Elements, Atomizdat, Moscow (English translation, AEC-tr-7505, National Technical Information Service, Springfield, VA 22151).

    Google Scholar 

  • Krikorian, O. H., Ebbinghaus, B. B., Adamson, M. G., Fontes, A. S. Jr, and Fleming, D. L. (1993a) Report UCRL-ID-112994.

    Google Scholar 

  • Krikorian, O. H., Condit, R. H., Fontes, A. S. Jr, Fleming, D. L., Magana, J. W., Morris, W. F., and Adamason, M. G. (1993b) Report UCRL-ID-114774.

    Google Scholar 

  • Krupa, J. C. and Gajek, Z. (1991) Eur. J. Solid State Chem., 28, 143.

    CAS  Google Scholar 

  • Krupa, J. C. (2001) personal communication to R. J. M. Konings.

    Google Scholar 

  • Küchle, W., Dolg, M., Stoll, H., and Preus, H. (1994) J. Chem. Phys., 100, 7535.

    Google Scholar 

  • Kunze, K. R., Hauge, R. H., Hamill, D., and Margrave, J. L. (1976) J. Chem. Phys. 65, 2026.

    CAS  Google Scholar 

  • Kurosaki, K., Yano, K., Yamada, K., Uno, M., and Yamanaka, S. (2000) J. Alloys Compds, 297, 1.

    CAS  Google Scholar 

  • Kuznietz, M. (1968) J. Chem. Phys., 49, 3731.

    CAS  Google Scholar 

  • Lambertin, D., Lacquement, J., Sanchez, S., and Picard, G. S. (2000) Plasmas and Ions, 3, 65.

    CAS  Google Scholar 

  • Larson, D. T. and Haschke, J. M. (1981) Inorg. Chem., 20, 1945–50.

    CAS  Google Scholar 

  • Latimer, W. M. (1952) Oxidation Potentials, 2nd edn, Prentice-Hall, New York.

    Google Scholar 

  • Lau, K. H. and Hildenbrand, D. L. (1982) J. Chem. Phys., 76, 2646.

    CAS  Google Scholar 

  • Lau, K. H. and Hildenbrand, D. L. (1984) J. Chem. Phys., 80, 1312.

    CAS  Google Scholar 

  • Lau, K. H. and Hildenbrand, D. L. (1987) J. Chem. Phys., 86: 2949.

    CAS  Google Scholar 

  • Lau, K. H. and Hildenbrand, D. L. (1990) J. Chem. Phys., 92: 6124–6130.

    CAS  Google Scholar 

  • Lau, K. H., Brittain, R. D., and Hildenbrand, D. L. (1989) J. Chem. Phys., 90, 1158.

    CAS  Google Scholar 

  • Lau, K. H., and Hildenbrand, D. L., (1989) J. Chem. Phys., 90, 1158.

    CAS  Google Scholar 

  • Lebedev, L. A. (1981) Radiokhimiya, 23, 12.

    CAS  Google Scholar 

  • Lemire, R. J. and Tremaine, P. R. (1980) J. Chem. Eng. Data, 25, 361–70.

    CAS  Google Scholar 

  • Lemire, R. J. (1984) Atomic Energy of Canada Ltd Report AECL-7817, Whiteshell Nuclear Research Establishment.

    Google Scholar 

  • Lemire, R. J., Campbell, A. B., Saluja, P. P. S., and Le Blanc, J. C. (1993) J. Nucl. Mater., 201, 165–75.

    CAS  Google Scholar 

  • Lemire, R. J. and Campbell, A. B. (1996a) Radiochim. Acta, 73, 131–7.

    CAS  Google Scholar 

  • Lemire, R. J. and Campbell, A. B. (1996b) Thermochim. Acta, 286, 225–31.

    CAS  Google Scholar 

  • Lemire, R. J., Fuger, J., Nitsche, H., Potter, P., Rand, M. H., Rydberg, J., Spahiu, K., Sullivan, J. C., Ullman, W. J., Vitorge, P., and Wanner, H. (2001) Chemical Thermodynamics of Neptunium and Plutonium, Elsevier, Amsterdam.

    Google Scholar 

  • Libowitz, G. G. and Maeland, A. J. (1979) in Handbook on Physics and Chemistry of Rare Earths (eds. L. R. Eyring and K. A. Gschneidner Jr), vol. 3, pp. 299–336.

    Google Scholar 

  • Lindemer, T. B., Besmann, T. M., and Johnson, C. E. (1981) J. Nucl. Mater., 100, 178–226.

    CAS  Google Scholar 

  • Lindemer, T. B. and Besmann, T. M. (1985) J. Nucl. Mater., 130, 473–88.

    CAS  Google Scholar 

  • Linevsky (1963) General Electric Report WADD-TR-60-646.

    Google Scholar 

  • Malm, J. G., Williams, C. W., Soderholm, L., and Morss, L. R. (1993) J. Alloys Compds, 194, 133.

    CAS  Google Scholar 

  • Maly, J. (1967) Inorg. Nucl. Chem. Lett., 3, 373.

    CAS  Google Scholar 

  • Maly, J. and Cunningham, B. B. (1967) Inorg. Nucl. Chem. Lett., 3, 445.

    CAS  Google Scholar 

  • Maly, J., Sikkeland, T., Silva, R., and Ghiorso, A. (1968) Science, 160, 1114–15.

    CAS  Google Scholar 

  • Martinot, L. (1978) Encyclopedia of Electrochemistry of the Elements, vol. VIII (ed. A. J. Bard), Marcel Dekker, New York, pp. 149–206.

    Google Scholar 

  • Martinot, L. (1982) in Handbook on the Physics and Chemistry of the Actinides (eds. A. J. Freeman and C. Keller), vol. 6, ch. 4, North-Holland, Amsterdam, p. 241.

    Google Scholar 

  • Martinot, L., and Fuger, J. (1985) Standard Potentials in Aqueous Solutions (eds. A. J. Bard, R. Parsons, and J. Jordan), Marcel Dekker, New York. ch. 21.

    Google Scholar 

  • Matsuda, T., Yamanaka, S., Kurosaki, K., Uno, M., and Kobayashi, S. (2001) J. Alloys Compds, 322, 77.

    CAS  Google Scholar 

  • Matsui, T., and Ohse, R. W. (1987) High Temp.–High Press., 19, 1–17 (see also Report EUR 10858 EN).

    CAS  Google Scholar 

  • Mazeina, L., Ushakov, S. V., Navrotsky, A., and Boatner, L. A. (2005) Geochim. Cosmochim. Acta, 69, 4675–83.

    CAS  Google Scholar 

  • Merli, L. and Fuger, J. (1994) Radiochim. Acta, 66/67, 109–13.

    CAS  Google Scholar 

  • Merli, L., Lambert, B., and Fuger, J. (1997) J. Nucl. Mater., 247, 172–6.

    CAS  Google Scholar 

  • Mikheev, N. B. (1983) Radiochim. Acta, 32, 69.

    CAS  Google Scholar 

  • Molnar, J. and Hargittai, M. (1995) J. Phys. Chem., 99, 10780.

    CAS  Google Scholar 

  • Moriyama, H., Konoshita, K., and Ito, Y. (1990) J. Nucl. Sci. Technol., 27, 827–34.

    CAS  Google Scholar 

  • Morss, L. R. (1976) Chem. Rev., 76, 827–41.

    CAS  Google Scholar 

  • Morss, L. R. and Fahey, J. A. (1976) Proc. 12th Rare Earth Res. Conf., vol. 1, Denver Research Institute, Denver, CO, pp. 443–50.

    Google Scholar 

  • Morss, L. R. and McCue, M. C. (1976) J. Chem. Eng. Data, 21, 337–41.

    CAS  Google Scholar 

  • Morss, L. R. and Fuger, J. (1981) J. Inorg. Nucl. Chem., 43, 2059–64.

    CAS  Google Scholar 

  • Morss, L. R. (1983) J. Less Common Metals, 93, 301–21.

    CAS  Google Scholar 

  • Morss, L. R. (1985) in Americium and Curium Chemistry and Technology (ed. N. Edelstein), D. Reidel, Dordrecht, The Netherlands, pp. 147–58.

    Google Scholar 

  • Morss, L. R. and Sonnenberger, D. C. (1985) J. Nucl. Mater., 130, 266–72.

    CAS  Google Scholar 

  • Morss, L. R., Fuger, J., Goffart, J., Edelstein, N., Shalimoff, G. V. (1987) J. Less Common Metals, 127, 251.

    CAS  Google Scholar 

  • Morss, L. R. and Eller, P. G. (1989) Radiochim. Acta, 47, 51–4.

    CAS  Google Scholar 

  • Morss, L. R. and Hall, J. P. (1994) 49th Annual Calorimetry Conference, Santa Fe, NM, July 31–Aug 5, paper No. 63.

    Google Scholar 

  • Morss, L. R. and Williams, C. W. (1994) Radiochim. Acta, 66/67, 89–93.

    CAS  Google Scholar 

  • Murad, E. and Hildenbrand, D. L. (1980) J. Chem. Phys., 73, 4005–11.

    CAS  Google Scholar 

  • Musikas, C., Couffin, F., and Marteau, M. (1974) J. Chim. Phys. Phys.-Chim. Biol., 5, 641–8.

    Google Scholar 

  • Nakajima, K., Arai, Y., and Suzuki, Y. (1997) J. Nucl. Mater., 247, 33–6.

    CAS  Google Scholar 

  • Nakajima, K., Arai, Y., and Suzuki, Y. (1999a) J. Nucl. Mater., 275, 332–5.

    CAS  Google Scholar 

  • Nakajima, K., Arai, Y., Suzuki, Y., and Yamawaki, M. (1999b) J. Mass Spectrom. Soc. Jpn, 47, 46–8.

    CAS  Google Scholar 

  • Nakajima, K. and Arai, Y. (2003) J. Nucl. Sci. Technol., Suppl. 3, 620–623.

    Google Scholar 

  • Newton, T. W. and Sullivan, J. C. (1985) in Handbook on the Chemistry of the Actinides, vol. 3 (eds. A. J. Freeman, G. L. Lander, and C. Keller), pp. 387–406.

    Google Scholar 

  • Nugent, L. J., Burnett, J. L., and Morss, L. R. (1973) J. Chem. Thermodyn., 5, 665–72.

    CAS  Google Scholar 

  • Oetting, F. L. (1967) Chem. Rev., 67, 261–97.

    CAS  Google Scholar 

  • Oetting, F. L., Rand, M. H., and Ackermann, R. J. (1976) The chemical thermodynamics of actinide elements and compounds, part 1, The Actinide Elements, STI/PUB/424/1, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Oetting, F. L. and Bixby, G. E. (1982) J. Nucl. Mater., 105, 257–61.

    CAS  Google Scholar 

  • Oetting, F. L., Hodges, A. E., Haschke, J. M., and Flotow, H. E. (1984) J. Chem. Thermodyn., 16, 1089–102.

    CAS  Google Scholar 

  • Ogard, A. E. (1970) in Plutonium 1970 and Other Actinides, vol. I, p. 78.

    Google Scholar 

  • O’Hare, P. A. G., Flotow, H. E., and Hoekstra, H. R. (1980) J. Chem. Thermodyn., 12, 1003–8.

    Google Scholar 

  • O’Hare, P. A. G., Malm, J. G., and Eller, P. G. (1982) J. Chem. Thermodyn., 14, 323–30.

    Google Scholar 

  • Ohse, R. W. (1968) Institute for Transuranium Elements, Progress Report no. 5, p. 26.

    Google Scholar 

  • Ogawa, T., Ohmichi, T., Maeda, A., Arai, Y., and Suzuki, Y. (1995) J. Alloys Compds, 224, 55.

    CAS  Google Scholar 

  • Onoe, J., Nakamatsu, H., Mukoyama, T., Sekine, R., Adachi, H., and Takeuchi, K. (1997) Inorg. Chem., 36, 1934.

    CAS  Google Scholar 

  • Osborne, D. W., Flotow, H. E., Fried, S. M., and Malm, J. G. (1974) J. Chem. Phys., 61, 1463.

    CAS  Google Scholar 

  • Palenzona, A. and Cirafici, S. (1975) Thermochim. Acta, 13, 357–61.

    CAS  Google Scholar 

  • Paine, R. T., McDowell, R. S., Asprey, L. B., and Jones, L. H. (1976) J. Chem. Phys., 64, 3081.

    CAS  Google Scholar 

  • Pedley, J. B. and Marshall, E. M. (1983) J. Phys. Chem. Ref. Data, 12, 967–1031.

    CAS  Google Scholar 

  • Peng, S. and Grimvall, G. (1994) J. Nucl. Mater., 210, 115–22.

    CAS  Google Scholar 

  • Perethrukhin, V. F., Shilov, V. P., and Pikaev, A. K. (1995) Technical Report-0817, Westinghouse Hanford Company, Richland, WA, USA.

    Google Scholar 

  • Peterson, J. R. and Burns, J. H. (1973) J. Inorg. Nucl. Chem., 35, 1525.

    CAS  Google Scholar 

  • Plambeck, J. A. (1976) Encyclopedia of electrochemistry of the elements, vol. X, Fused Salt Systems (ed. A. J. Bard), Marcel Dekker, New York.

    Google Scholar 

  • Popov, M. M., Gal’chenko, G. L., and Senin, M. D. (1959) Russ. J. Inorg. Chem., 4, 560.

    Google Scholar 

  • Prabhahara, R. B., Babu, R, Nagarajan, K., and Vasudeva- Rao, P. R. (1998) J. Alloys Compds, 271–273, 395–8.

    Google Scholar 

  • Prasad, R., Dash, S., Parida, S. C., Singh, Z., and Venugopal, V. (2000) J. Nucl. Mater., 277, 45–8.

    CAS  Google Scholar 

  • Privalov, T., Schimmelpfennig, B., Wahlgren, U., and Grenthe, I. (2002) J. Phys. Chem., 106, 11277.

    CAS  Google Scholar 

  • Rand, M. H. and Kubaschewski, O. (1963) The Thermochemical Properties of Uranium Compounds, Interscience, New York.

    Google Scholar 

  • Rand, M. H. (1966) At. Energy Rev., 4, Spec. Issue no. 1, 7–51.

    CAS  Google Scholar 

  • Rand, M. H. (1968) Technical Panel on Uranium and Plutonium Carbides, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Rand, M. H. (1975) At. Energy Rev., Spec. Issue no. 5, 7–85.

    Google Scholar 

  • Robbins, D. A. and Jenkins, J. (1955) Acta Metall., 3, 598–605.

    Google Scholar 

  • Ronchi, C. and Hiernaut, J. P. (1996) J. Alloys Compds, 240, 179–85.

    CAS  Google Scholar 

  • Ronchi, C., Capone, F., Colle, J. Y., and Hiernaut, J. P. (2000) J. Nucl. Mater., 280, 111–15.

    CAS  Google Scholar 

  • Ronchi, C., Iosilevsji, I. L., and Yakub, E. (2002) Equation of State of Uranium Dioxide, Springer, Berlin, 2004.

    Google Scholar 

  • Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, L. (1952) Selected Values of Chemical Thermodynamic Properties, U.S. Natl. Bur. Stand. Circ. 500, U.S. Govt. Printing Office, Washington, DC.

    Google Scholar 

  • Roy, J. J., Grantham, L. F., Grimmett, D. L., Fusselman, S. P., Krueger, C. L., Strovick, T. S., Inoue, T., Sakamura, Y., and Takahashi, N. (1996) J. Electrochem. Soc., 143, 2487–93.

    CAS  Google Scholar 

  • Samhoun, K. and David, F. (1976) in Transplutonium Elements, Proc. 4th Int. Transplu-tonium Elements Symp.(eds. W. Müller and R. Linder), North Holland, Amsterdam, pp. 297–319.

    Google Scholar 

  • Santos, M., Marçalo, J., Pires de Matos, A., Gibson, J. K., and Haire, R.G. (2002a) J. Phys. Chem. A, 106, 7190–4.

    CAS  Google Scholar 

  • Santos, M., Marçalo, J., Leal, P., Pires de Matos, A., Gibson, J. K., and Haire, R. G. (2002b) Int. J. Mass Spectrom., 228, 457–65.

    Google Scholar 

  • Schoebrechts, J.-P., Fuger, J., and Morss, L. R. (1989) Thermochim. Acta, 139, 49–55.

    CAS  Google Scholar 

  • Seaborg, G. T., Katz, J. J., and Manning, W. M. (eds.) (1949) The Transuranium Elements: Research Papers, Natl. Nucl. En. Ser., Div. IV, 14B, McGraw-Hill, New York.

    Google Scholar 

  • Seleznev, A. G., Kosulin, N. S., Kosenkov, V. M., Shushakov, V. D., Stupin, V. A., Demeshkin, V. A. (1977) Fiz. Met. Metall., 44, 654–7.

    CAS  Google Scholar 

  • Seleznev, A. G., Shushakov, V. D., and Kosulin, N. S. (1978) Fiz. Met. Metall., 46, 1109–12.

    CAS  Google Scholar 

  • Serizawa, H., Arai, Y., and Nakajima, K. (2001) J. Chem. Thermodyn., 33, 615–28.

    CAS  Google Scholar 

  • Serp, J., Konings, R. J. M., Malmbeck, R., Rebizant, J., Scheppler, C., and Glatz, J.-P. (2004) J. Electroanal. Chem., 561, 143–8.

    CAS  Google Scholar 

  • Shannon, R. D. (1976) Acta Crystallogr. A, 32, 751–67.

    Google Scholar 

  • Shock, E. L., Sassani, D. C., Willis, M., and Svergensky, D. A. (1997) Geochim. Cosmo-chim. Acta, 61, 907–50.

    CAS  Google Scholar 

  • Silva, R. J., McDowell, W. J., Keller, Jr, and O. L. Tarrant, J. R. (1974) Inorg. Chem., 13, 2233–8.

    CAS  Google Scholar 

  • Silva, R. J. (1982) Lawrence Berkeley Laboratory Report LBL-15055, 57 pp.

    Google Scholar 

  • Silva, R. J., Bidoglio, G. R., Rand, M. H., Robouch, P. B., Wanner, H., and Puigdo-menech, I. (1995) Chemical Thermodynamics of Americium, Elsevier, Amsterdam.

    Google Scholar 

  • Simakin, G. A., Baranov, A. A., Kosyakov, V. N., Timofeev, G. A., Erin, E. A., and Lebedev, I. A. (1977) Sov. Radiochem., 19, 307–9.

    Google Scholar 

  • Smith, P. K. and Peterson, D. E. (1970) J. Chem. Phys., 52, 4963–70.

    CAS  Google Scholar 

  • Souter, P. F. and Andrews, L. (1997) J. Mol. Struct., 412, 161–5.

    CAS  Google Scholar 

  • Tagawa, H. (1974) J. Nucl. Mater., 51, 78–89.

    CAS  Google Scholar 

  • Takahashi, K., Fujino, T., and Morss, L. R. (1993) J. Solid State Chem., 105, 234–42.

    CAS  Google Scholar 

  • Tasker, I., O’Hare, P. A. G., Lewis, B. M., Johnson, G. K., and Cordfiunke, E. H. P. (1988) Can. J. Chem., 66, 620–5.

    CAS  Google Scholar 

  • Thiriet, C. and Konings, R. J. M. (2003) J. Nucl. Mater., 320, 292–8.

    CAS  Google Scholar 

  • Turcotte, R. P., Chikalla, T. D., and Eyring, L. (1971) J. Inorg. Nucl. Chem., 33, 3749–60.

    CAS  Google Scholar 

  • Turcotte, R. P., Chikalla, T. D., and Eyring, L. (1973) J. Inorg. Nucl. Chem., 35, 809–17.

    CAS  Google Scholar 

  • Turcotte, R. P., Chikalla, T. D., and Haire, R. G. (1980) J. Inorg. Nucl. Chem., 42, 1729–35.

    CAS  Google Scholar 

  • Usami, T., Kato, T., Kurata, M., Inoue, T., Sims, H. E., Beetham, S. A., and Jenkins, J. A. (2002) J. Nucl. Mater., 304, 50–5.

    CAS  Google Scholar 

  • Venugopal, V., Kulkarni, S. G., Subbanna, C. S., and Sood, D. D. (1992) J. Nucl. Mater., 186, 259–68.

    CAS  Google Scholar 

  • Volkov, Yu. F., Visyashcheva, G. I., Tomilin, S. V., Kapshukov, I. I., and Rykov, A. G. (1981) Radiokhimiya, 23, 243–7.

    CAS  Google Scholar 

  • Wade, W. Z. and Wolf, T. (1967) J. Inorg. Nucl. Chem., 29, 2577–82.

    CAS  Google Scholar 

  • Wadt, W. R. and Hay, P. J. (1979) J. Am. Chem. Soc., 101, 5198–205.

    CAS  Google Scholar 

  • Wagman, D. D., Schumm, R. H., and Parker, V. B. (1977) Report NBSIR 77–1300.

    Google Scholar 

  • Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., and Nuttall, R. L. (1981) U.S.. Natl. Bur. Stand. Tech. Note 270–8, U.S. Govt. Printing Office, Washington, DC; (1982) J. Phys. Chem. Ref. Data, 11, Suppl. 2.

    Google Scholar 

  • Ward, J. W., Kleinschmidt, P. D., and Peterson, D. E. (1986) in Handbook on the Physics and Chemistry of the Actinides (eds. A. J. Freeman and C. Keller), vol. 4, ch. 7.

    Google Scholar 

  • Ward, J. W., Batscher, W., and Rebizant, J. (1987) J. Less Common Metals, 130, 431–6.

    CAS  Google Scholar 

  • Weigel, F., Hoffmann, G., and Ter Meer, N. (1969) Radiochim. Acta, 11, 210–16.

    CAS  Google Scholar 

  • Weigel, F., Hoffmann, G., Wishnevsky, V., and Brown, D. (1974) J. Chem. Soc. Dalton Trans., 1473–7.

    Google Scholar 

  • Weigel, F. and Kohl, R. (1985) in Americium and Curium Chemistry and Technology (eds. N. M. Edelstein, J. D. Navratil, and W. W. Schultz), D. Reidel, Dordrecht, The Netherlands, p. 159.

    Google Scholar 

  • Westrum, Jr and E. F. Eyring, L. (1949) in The Transuranium Elements (eds. G. T. Seaborg, J. J. Katz, and W. M. Manning), Natl. Nucl. En. Ser., Div. IV, 14B, McGraw-Hill, New York, paper 6.52.

    Google Scholar 

  • Westrum, E. F. Jr, Zainel, H. A., and Jakes, D. (1980) in Proc. Symp. Thermodyn. Nucl. Mater. 1979, IAEA, Vienna, vol. II, pp. 143–54.

    Google Scholar 

  • Williams, C. W., Morss, L. R., and Choi, I.-K. (1984) in Geochemical Behavior of Disposed Radioactive Waste (eds. G. S. Barney, J. D. Navratil, and W. W. Schulz), Am. Chem. Soc. Symp. Ser. 246, American Chemical Society, Washington, DC, pp. 323–34.

    Google Scholar 

  • Williams, C. W., Blaudeau, J.-P., Sullivan, J. C., Antonio, M. R., Bursten, B. E., and Soderholm, L. (2001) J. Am. Chem. Soc., 123, 4346–7.

    CAS  Google Scholar 

  • Yamashita, T., Nitani, N., Tsuji, T., and Kato, T. (1997) J. Nucl. Mater., 247, 90–3.

    CAS  Google Scholar 

  • Yamana, H. and Moriyama, H. (2002) Personal communication.

    Google Scholar 

  • Yamanaka, S., Kurosaki, K., Matsuda, T., and Uno, M. (2001) J. Nucl. Mater., 294, 99–103.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Konings, R.J.M., Morss, L.R., Fuger, J. (2010). Thermodynamic Properties of Actinides and Actinide Compounds. In: Morss, L.R., Edelstein, N.M., Fuger, J. (eds) The Chemistry of the Actinide and Transactinide Elements. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0211-0_19

Download citation

Publish with us

Policies and ethics