Skip to main content

Spontaneous Low-Frequency Fluctuation Observed with Functional Magnetic Resonance Imaging as a Potential Biomarker in Neuropsychiatric Disorders

  • Conference paper
  • First Online:
  • 738 Accesses

Abstract

As functional magnetic resonance imaging (fMRI) studies have yielded increasing amounts of information about the brain’s spontaneous activity, they have revealed fMRI’s potential to locate changes in brain hemodynamics in neuropsychiatric disorders. In this paper, we review studies that support the notion that changes in spontaneous low-frequency fluctuation (SLFF) observed by fMRI can be used as potential biomarkers for diagnosis and treatment evaluation in neuropsychiatric disorders. In this paper, we review the methods used to study SLFF from individual region of interest analysis, to local network analysis, to whole brain network analysis. We also summarize the major findings associated with major neurological and psychiatric disorders obtained using these methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8 (2007) 700–711.

    Article  CAS  PubMed  Google Scholar 

  2. Bandettini, P.A., Bullmore, E.: Endogenous oscillations and networks in functional magnetic resonance imaging. Hum. Brain Mapp. 29 (2008) 737–739.

    Article  PubMed  Google Scholar 

  3. Kiviniemi, V.: Endogenous brain fluctuations and diagnostic imaging. Hum. Brain Mapp. 29 (2008) 810–817.

    Article  PubMed  Google Scholar 

  4. Zeki, S., Shipp, S.: The functional logic of cortical connections. Nature, 335 (1988) 311–317.

    Article  CAS  PubMed  Google Scholar 

  5. Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2 (1994) 56–78.

    Article  Google Scholar 

  6. Friston, K.J., Frith, C.D., Liddle, P.F., Frackowiak, R.S.: Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow. Metab. 13 (1993) 5–14.

    CAS  PubMed  Google Scholar 

  7. Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J.: A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp, 14 (2001) 140–151.

    Article  CAS  PubMed  Google Scholar 

  8. Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U S A. 100 (2003) 253–258.

    Article  CAS  PubMed  Google Scholar 

  9. Bartels, A., Zeki, S.: The chronoarchitecture of the cerebral cortex. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360 (2005) 733–750.

    Article  PubMed  Google Scholar 

  10. van de Ven, V.G., Formisano, E., Prvulovic, D., Roeder, C.H., Linden, D.E.: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp, 22 (2004) 165–178.

    Article  PubMed  Google Scholar 

  11. Kiviniemi, V., Kantola, J.H., Jauhiainen, J., Hyvarinen, A., Tervonen, O.: Independent component analysis of nondeterministic fMRI signal sources. Neuroimage. 19 (2003) 253–260.

    Article  PubMed  Google Scholar 

  12. Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M.: Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360 (2005) 1001–1013.

    Article  PubMed  Google Scholar 

  13. Beckmann, C.F., Smith, S.M.: Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage. 25 (2005) 294–311.

    Article  CAS  PubMed  Google Scholar 

  14. De Luca, M., Beckmann, C.F., De Stefano, N., Matthews, P.M., Smith, S.M.: fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage. 29 (2006) 1359–1367.

    Article  PubMed  Google Scholar 

  15. Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann, C.F.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U S A. 103 (2006) 13848–13853.

    Article  CAS  PubMed  Google Scholar 

  16. Fransson, P., Skiold, B., Horsch, S., Nordell, A., Blennow, M., Lagercrantz, H., Aden, U.: Resting-state networks in the infant brain. Proc. Natl. Acad. Sci. U S A. 104 (2007) 15531–15536.

    Article  CAS  PubMed  Google Scholar 

  17. Fox, M.D., Snyder, A.Z., Vincent, J.L., Raichle, M.E.: Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron. 56 (2007) 171–184.

    Article  CAS  PubMed  Google Scholar 

  18. Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L.: The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124 (2008) 1–38.

    Article  PubMed  Google Scholar 

  19. Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., Jiang, T.: Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum. Brain Mapp. 28 (2007) 967–978.

    Article  PubMed  Google Scholar 

  20. Allen, G., Barnard, H., McColl, R., Hester, A.L., Fields, J.A., Weiner, M.F., Ringe, W.K., Lipton, A.M., Brooker, M., McDonald, E., Rubin, C.D., Cullum, C.M.: Reduced hippocampal functional connectivity in Alzheimer disease. Arch. Neurol. 64 (2007) 1482–1487.

    Article  PubMed  Google Scholar 

  21. Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., Wu, T., Jiang, T., Li, K.: Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage. 31 (2006) 496–504.

    Article  PubMed  Google Scholar 

  22. Liu, Y., Wang, K., Yu, C., He, Y., Zhou, Y., Liang, M., Wang, L., Jiang, T.: Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: A review of resting-state fMRI studies. Neuropsychologia 46 (2008) 1648–1656.

    Article  PubMed  Google Scholar 

  23. Kahn, I., Andrews-Hanna, J.R., Vincent, J.L., Snyder, A.Z., Buckner, R.L.: Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J. Neurophysiol. 100 (2008) 129–139.

    Article  PubMed  Google Scholar 

  24. Bunney, W.E., Bunney, B.G.: Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res. Brain Res. Rev. 31 (2000) 138–146.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, Y., Liang, M., Jiang, T., Tian, L., Liu, Y., Liu, Z., Liu, H., Kuang, F.: Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci. Lett. 417 (2007) 297–302.

    Article  CAS  PubMed  Google Scholar 

  26. Bluhm, R.L., Miller, J., Lanius, R.A., Osuch, E.A., Boksman, K., Neufeld, R.W., Theberge, J., Schaefer, B., Williamson, P.: Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr. Bull. 33 (2007) 1004–1012.

    Article  PubMed  Google Scholar 

  27. Zhou, Y., Shu, N., Liu, Y., Song, M., Hao, Y., Liu, H., Yu, C., Liu, Z., Jiang, T.: Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr. Res. 100 (2008) 120–132.

    Article  PubMed  Google Scholar 

  28. Castellanos, F.X., Margulies, D.S., Kelly, C., Uddin, L.Q., Ghaffari, M., Kirsch, A., Shaw, D., Shehzad, Z., Di Martino, A., Biswal, B., Sonuga-Barke, E.J., Rotrosen, J., Adler, L.A., Milham, M.P.: Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry. 63 (2008) 332–337.

    Article  PubMed  Google Scholar 

  29. Delbeuck, X., Van der Linden, M., Collette, F.: Alzheimer’s disease as a disconnection syndrome?. Neuropsychol. Rev. 13 (2003) 79–92.

    Article  CAS  PubMed  Google Scholar 

  30. Friston, K.J., Frith, C.D.: Schizophrenia: a disconnection syndrome?. Clin. Neurosci. 3 (1995) 89–97.

    CAS  PubMed  Google Scholar 

  31. Friston, K.J.: The disconnection hypothesis. Schizophr. Res. 30 (1998) 115–125.

    Article  CAS  PubMed  Google Scholar 

  32. Fransson, P.: Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26 (2005) 15–29.

    Article  PubMed  Google Scholar 

  33. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U S A. 102 (2005) 9673–9678.

    Article  CAS  PubMed  Google Scholar 

  34. Fox, M.D., Corbetta, M., Snyder, A.Z., Vincent, J.L., Raichle, M.E.: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. U S A. 103 (2006) 10046–10051.

    Article  CAS  PubMed  Google Scholar 

  35. Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V.: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U S A. 101 (2004) 4637–4642.

    Article  CAS  PubMed  Google Scholar 

  36. Sorg, C., Riedl, V., Muhlau, M., Calhoun, V.D., Eichele, T., Laer, L., Drzezga, A., Forstl, H., Kurz, A., Zimmer, C., Wohlschlager, A.M.: Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. U S A. 104 (2007) 18760–18765.

    Article  CAS  PubMed  Google Scholar 

  37. Garrity, A.G., Pearlson, G.D., McKiernan, K., Lloyd, D., Kiehl, K.A., Calhoun, V.D.; Aberrant “default mode” functional connectivity in schizophrenia. Am. J. Psychiatry. 164 (2007) 450–457.

    Article  PubMed  Google Scholar 

  38. Calhoun, V.D., Kiehl, K.A., Pearlson, G.D.: Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum. Brain Mapp. 29 (2008) 828–838.

    Article  PubMed  Google Scholar 

  39. Zhou, Y., Liang, M., Tian, L., Wang, K., Hao, Y., Liu, H., Liu, Z., Jiang, T.: Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr. Res. 97 (2007) 194–205.

    Article  PubMed  Google Scholar 

  40. Salvador, R., Martinez, A., Pomarol-Clotet, E., Sarro, S., Suckling, J., Bullmore, E.: Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance imaging. Neuroimage. 35 (2007) 83–88.

    Article  CAS  PubMed  Google Scholar 

  41. Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex. 15 (2005) 1332–1342.

    Article  PubMed  Google Scholar 

  42. Liang, M., Zhou, Y., Jiang, T., Liu, Z., Tian, L., Liu, H., Hao, Y.: Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport. 17 (2006) 209–213.

    Article  PubMed  Google Scholar 

  43. Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., He, Y.: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum. Brain Mapp., 30 (2009) 1511–1523.

    Article  PubMed  Google Scholar 

  44. Williamson, P.: Are anticorrelated networks in the brain relevant to schizophrenia?. Schizophr. Bull. 33 (2007) 994–1003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Rhoda E. and Edmund F. Perozzi for English language assistance. This work was supported by the Natural Science Foundation of China (Grant No. 30425004 and Grant No. 30730035), and the National Key Basic Research and Development Program (973) (Grant No. 2007CB512304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Zhou, Y., Wang, K., Liu, Y., Song, M., Song, S.W., Jiang, T. (2011). Spontaneous Low-Frequency Fluctuation Observed with Functional Magnetic Resonance Imaging as a Potential Biomarker in Neuropsychiatric Disorders. In: Wang, R., Gu, F. (eds) Advances in Cognitive Neurodynamics (II). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9695-1_7

Download citation

Publish with us

Policies and ethics