Skip to main content

An Overview of Prokaryotic Transcription Factors

A Summary of Function and Occurrence in Bacterial Genomes

  • Chapter
  • First Online:
A Handbook of Transcription Factors

Part of the book series: Subcellular Biochemistry ((SCBI,volume 52))

Abstract

Transcriptional initiation is arguably the most important control point for gene expression. It is regulated by a combination of factors, including DNA sequence and its three-dimensional topology, proteins and small molecules. In this chapter, we focus on the trans-acting factors of bacterial regulation. Initiation begins with the recruitment of the RNA polymerase holoenzyme to a specific locus upstream of the gene known as its promoter. The sigma factor, which is a component of the holoenzyme, provides the most fundamental mechanisms for orchestrating broad changes in gene expression state. It is responsible for promoter recognition as well as recruiting the holoenzyme to the promoter. Distinct sigma factors compete with for binding to a common pool of RNA polymerases, thus achieving condition-dependent differential expression. Another important class of bacterial regulators is transcription factors, which activate or repress transcription of target genes typically in response to an environmental or cellular trigger. These factors may be global or local depending on the number of genes and range of cellular functions that they target. The activities of both global and local transcription factors may be regulated either at a post-transcriptional level via signal-sensing protein domains or at the level of their own expression. In addition to modulating polymerase recruitment to promoters, several global factors are considered as “nucleoid-associated proteins” that impose structural constraints on the chromosome by altering the conformation of the bound DNA, thus influencing other processes involving DNA such as replication and recombination. This chapter concludes with a discussion of how regulatory interactions between transcription factors and their target genes can be represented as a network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Browning DF, Busby SJ (2004) The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65

    Article  PubMed  CAS  Google Scholar 

  2. Goldman SR, Ebright RH, Nickels BE (2009) Direct detection of abortive RNA transcripts in vivo. Science 324:927–928

    Article  PubMed  CAS  Google Scholar 

  3. Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466

    Article  PubMed  CAS  Google Scholar 

  4. Pérez-Rueda E, Janga SC, Martínez-Antonio A (2009) Scaling relationship in the gene content of transcriptional machinery in bacteria. Mol Biosyst 5:1494–1501

    Article  PubMed  Google Scholar 

  5. Holland AM, Rather PN (2008) Evidence for extracellular control of RpoS proteolysis in Escherichia coli. FEMS Microbiol Lett 286:50–59

    Article  PubMed  CAS  Google Scholar 

  6. Balandina A, Claret L, Hengge-Aronis R, et al (2001) The Escherichia coli histone-like protein HU regulates rpoS translation. Mol Microbiol 39:1069–1079

    Article  PubMed  CAS  Google Scholar 

  7. Zhou Y, Gottesman S, Hoskins JR, et al (2001) The RssB response regulator directly targets sigma (S) for degradation by ClpXP. Genes Dev 15:627–637

    Article  PubMed  CAS  Google Scholar 

  8. Yamashino T, Ueguchi C, Mizuno T (1995) Quantitative control of the stationary phase-specific sigma factor, sigma S, in Escherichia coli: involvement of the nucleoid protein H-NS. EMBO J 14:594–602

    PubMed  CAS  Google Scholar 

  9. Jishage M, Ishihama A (1998) A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. Proc Natl Acad Sci U S A 95:4953–4958

    Article  PubMed  CAS  Google Scholar 

  10. Jishage M, Kvint K, Shingler V, et al (2002) Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev 16:1260–1270

    Article  PubMed  CAS  Google Scholar 

  11. Wassarman KM, Storz G (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101:613–623

    Article  PubMed  CAS  Google Scholar 

  12. Shin M, Song M, Rhee JH, et al (2005) DNA looping-mediated repression by histone-like protein H-NS: specific requirement of Esigma70 as a cofactor for looping. Genes Dev 19:2388–2398

    Article  PubMed  CAS  Google Scholar 

  13. Typas A, Hengge R (2006) Role of the spacer between the -35 and -10 regions in sigmas promoter selectivity in Escherichia coli. Mol Microbiol 59:1037–1051

    Article  PubMed  CAS  Google Scholar 

  14. Typas A, Becker G, Hengge R (2007) The molecular basis of selective promoter activation by the sigmaS subunit of RNA polymerase. Mol Microbiol 63:1296–1306

    Article  PubMed  CAS  Google Scholar 

  15. Wade JT, Roa DC, Grainger DC, et al (2006) Extensive functional overlap between sigma factors in Escherichia coli. Nat Struct Mol Biol 13:806–814

    Article  PubMed  CAS  Google Scholar 

  16. Waldminghaus T, Skarstad K (2010) ChIP on Chip: surprising results are often artifacts. BMC Genomics 11:414

    Article  PubMed  Google Scholar 

  17. Hansen UM, McClure WR (1980) Role of the sigma subunit of Escherichia coli RNA polymerase in initiation. II. Release of sigma from ternary complexes. J Biol Chem 255:9564–9570

    PubMed  CAS  Google Scholar 

  18. Travers AA, Burgess RR (1969) Cyclic re-use of the RNA polymerase sigma factor. Nature 222:537–540

    Article  PubMed  CAS  Google Scholar 

  19. Straney DC, Crothers DM (1985) Intermediates in transcription initiation from the E. coli lac UV5 promoter. Cell 43:449–459

    Article  PubMed  CAS  Google Scholar 

  20. Kapanidis AN, Margeat E, Laurence TA, et al (2005) Retention of transcription initiation factor sigma70 in transcription elongation: single-molecule analysis. Mol Cell 20:347–356

    Article  PubMed  CAS  Google Scholar 

  21. Mukhopadhyay J, Kapanidis AN, Mekler V, et al (2001) Translocation of sigma (70) with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA. Cell 106:453–463

    Article  PubMed  CAS  Google Scholar 

  22. Reppas NB, Wade JT, Church GM, et al (2006) The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. Mol Cell 24:747–757

    Article  PubMed  CAS  Google Scholar 

  23. Mooney RA, Landick R (2003) Tethering sigma70 to RNA polymerase reveals high in vivo activity of sigma factors and sigma70-dependent pausing at promoter-distal locations. Genes Dev 17:2839–2851

    Article  PubMed  CAS  Google Scholar 

  24. Ring BZ, Yarnell WS, Roberts JW (1996) Function of E. coli RNA polymerase sigma factor sigma 70 in promoter-proximal pausing. Cell 86:485–493

    Article  PubMed  CAS  Google Scholar 

  25. Salgado H, Martínez-Antonio A, Janga SC (2007) Conservation of transcriptional sensing systems in prokaryotes: a perspective from Escherichia coli. FEBS Lett 581:3499–3506

    Article  PubMed  CAS  Google Scholar 

  26. Finn RD, Mistry J, Tate J, et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  PubMed  CAS  Google Scholar 

  27. Altschul SF, Madden TL, Schäffer AA, et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  28. Pfreundt U, James DP, Tweedie S, et al (2010) FlyTF: improved annotation and enhanced functionality of the Drosophila transcription factor database. Nucleic Acids Res 38:D443–D447

    Article  PubMed  CAS  Google Scholar 

  29. Gama-Castro S, Jiménez-Jacinto V, Peralta-Gil M, et al (2008) RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res 36:D120–D124

    Article  PubMed  CAS  Google Scholar 

  30. Charoensawan V, Wilson D, Teichmann SA (2010) Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic Acids Res 38:7364–7377

    Google Scholar 

  31. van Nimwegen E (2003) Scaling laws in the functional content of genomes. Trends Genet 19:479–484

    Article  PubMed  Google Scholar 

  32. Ranea JA, Grant A, Thornton JM, et al (2005) Microeconomic principles explain an optimal genome size in bacteria. Trends Genet 21:21–25

    Article  PubMed  CAS  Google Scholar 

  33. Madan Babu M, Teichmann SA (2003) Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res 31:1234–1244

    Article  PubMed  CAS  Google Scholar 

  34. Madan Babu M, Teichmann SA, Aravind L (2006) Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J Mol Biol 358:614–633

    Article  PubMed  CAS  Google Scholar 

  35. Cole ST, Eiglmeier K, Parkhill J, et al (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

    Article  PubMed  CAS  Google Scholar 

  36. Andersson SG, Zomorodipour A, Andersson JO, et al (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    Article  PubMed  CAS  Google Scholar 

  37. Anantharaman V, Koonin EV, Aravind L (2001) Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J Mol Biol 307:1271–1292

    Article  PubMed  CAS  Google Scholar 

  38. Keseler IM, Bonavides-Martínez C, Collado-Vides J, et al (2009) EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 37:D464–D470

    Article  PubMed  CAS  Google Scholar 

  39. Sellick CA, Reece RJ (2005) Eukaryotic transcription factors as direct nutrient sensors. Trends Biochem Sci 30:405–412

    Article  PubMed  CAS  Google Scholar 

  40. Martínez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6:482–489

    Article  PubMed  Google Scholar 

  41. Kahramanoglou C, Seshasayee ASN, Prieto AI, et al (2011) Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 39:2073–2091

    Google Scholar 

  42. Seshasayee AS, Fraser GM, Babu MM, et al (2009) Principles of transcriptional regulation and evolution of the metabolic system in E. coli. Genome Res 19:79–91

    Article  PubMed  CAS  Google Scholar 

  43. Anderson JJ, Quay SC, Oxender DL (1976) Mapping of two loci affecting the regulation of branched-chain amino acid transport in Escherichia coli K-12. J Bacteriol 126:80–90

    PubMed  CAS  Google Scholar 

  44. Lin R, D’Ari R, Newman EB (1992) Lambda placMu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol 174:1948–1955

    PubMed  CAS  Google Scholar 

  45. Chen S, Hao Z, Bieniek E, et al (2001) Modulation of Lrp action in Escherichia coli by leucine: effects on non-specific binding of Lrp to DNA. J Mol Biol 314:1067–1075

    Article  PubMed  CAS  Google Scholar 

  46. Cho BK, Barrett CL, Knight EM, et al (2008) Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli. Proc Natl Acad Sci U S A 105:19462–19467

    Article  PubMed  CAS  Google Scholar 

  47. Calvo JM, Matthews RG (1994) The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 58:466–490

    PubMed  CAS  Google Scholar 

  48. Chen S, Rosner MH, Calvo JM (2001) Leucine-regulated self-association of leucine-responsive regulatory protein (Lrp) from Escherichia coli. J Mol Biol 312:625–635

    Article  PubMed  CAS  Google Scholar 

  49. McFarland KA, Lucchini S, Hinton JC, et al (2008) The leucine-responsive regulatory protein, Lrp, activates transcription of the fim operon in Salmonella enterica serovar typhimurium via the fimZ regulatory gene. J Bacteriol 190:602–612

    Article  PubMed  CAS  Google Scholar 

  50. Tapias A, López G, Ayora S (2000) Bacillus subtilis LrpC is a sequence-independent DNA-binding and DNA-bending protein which bridges DNA. Nucleic Acids Res 28:552–559

    Article  PubMed  CAS  Google Scholar 

  51. Beloin C, Jeusset J, Revet B, et al (2003) Contribution of DNA conformation and topology in right-handed DNA wrapping by the Bacillus subtilis LrpC protein. J Biol Chem 278:5333–5342

    Article  PubMed  CAS  Google Scholar 

  52. Zheng D, Constantinidou C, Hobman JL, et al (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32:5874–5893

    Article  PubMed  CAS  Google Scholar 

  53. Soutourina O, Kolb A, Krin E, et al (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508

    PubMed  CAS  Google Scholar 

  54. Liu M, Durfee T, Cabrera JE, et al (2005) Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem 280:15921–15927

    Article  PubMed  CAS  Google Scholar 

  55. Grainger DC, Hurd D, Harrison M, et al (2005) Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc Natl Acad Sci U S A 102:17693–17698

    Article  PubMed  CAS  Google Scholar 

  56. Lin SH, Lee JC (2003) Determinants of DNA bending in the DNA-cyclic AMP receptor protein complexes in Escherichia coli. Biochemistry 42:4809–4818

    Article  PubMed  CAS  Google Scholar 

  57. Napoli AA, Lawson CL, Ebright RH, et al (2006) Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: recognition of pyrimidine-purine and purine-purine steps. J Mol Biol 357:173–183

    Article  PubMed  CAS  Google Scholar 

  58. Schneider R, Travers A, Muskhelishvili G (1997) FIS modulates growth phase-dependent topological transitions of DNA in Escherichia coli. Mol Microbiol 26:519–530

    Article  PubMed  CAS  Google Scholar 

  59. Ali Azam T, Iwata A, Nishimura A, et al (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181:6361–6370

    PubMed  CAS  Google Scholar 

  60. Browning DF, Cole JA, Busby SJ (2008) Regulation by nucleoid-associated proteins at the Escherichia coli nir operon promoter. J Bacteriol 190:7258–7267

    Article  PubMed  CAS  Google Scholar 

  61. Grainger DC, Goldberg MD, Lee DJ, et al (2008) Selective repression by Fis and H-NS at the Escherichia coli dps promoter. Mol Microbiol 68:1366–1377

    Article  PubMed  CAS  Google Scholar 

  62. Squire DJ, Xu M, Cole JA, et al (2009) Competition between NarL-dependent activation and Fis-dependent repression controls expression from the Escherichia coli yeaR and ogt promoters. Biochem J 420:249–257

    Article  PubMed  CAS  Google Scholar 

  63. Bradley MD, Beach MB, de Koning AP, et al (2007) Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology 153:2922–2940

    Article  PubMed  CAS  Google Scholar 

  64. Cho BK, Knight EM, Barrett CL, et al (2008) Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res 18:900–910

    Article  PubMed  CAS  Google Scholar 

  65. Maurer S, Fritz J, Muskhelishvili G (2009) A systematic in vitro study of nucleoprotein complexes formed by bacterial nucleoid-associated proteins revealing novel types of DNA organization. J Mol Biol 387:1261–1276

    Article  PubMed  CAS  Google Scholar 

  66. Schneider R, Lurz R, Lüder G, et al (2001) An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res 29:5107–5114

    Article  PubMed  CAS  Google Scholar 

  67. Dorman CJ (2004) H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400

    Article  PubMed  CAS  Google Scholar 

  68. Dame RT, Luijsterburg MS, Krin E, et al (2005) DNA bridging: a property shared among H-NS-like proteins. J Bacteriol 187:1845–1848

    Article  PubMed  CAS  Google Scholar 

  69. Dame RT, Noom MC, Wuite GJ (2006) Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444:387–390

    Article  PubMed  CAS  Google Scholar 

  70. Dorman CJ (2007) Probing bacterial nucleoid structure with optical tweezers. Bioessays 29:212–216

    Article  PubMed  CAS  Google Scholar 

  71. Noom MC, Navarre WW, Oshima T, Wuite GJ, Dame RT (2007) H-NS promotes looped domain formation in the bacterial chromosome. Curr Biol 17:R913–R914

    Google Scholar 

  72. Oshima T, Ishikawa S, Kurokawa K, et al (2006) Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res 13:141–153

    Article  PubMed  CAS  Google Scholar 

  73. Doyle M, Fookes M, Ivens A, et al (2007) An H-NS-like stealth protein aids horizontal DNA transmission in bacteria. Science 315:251–252

    Article  PubMed  CAS  Google Scholar 

  74. Lucchini S, Rowley G, Goldberg MD, et al (2006) H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2:e81

    Article  PubMed  Google Scholar 

  75. Schechter LM, Jain S, Akbar S, et al (2003) The small nucleoid-binding proteins H-NS, HU, and Fis affect hilA expression in Salmonella enterica serovar Typhimurium. Infect Immun 71:5432–5435

    Article  PubMed  CAS  Google Scholar 

  76. Hinton JC, Santos DS, Seirafi A, et al (1992) Expression and mutational analysis of the nucleoid-associated protein H-NS of Salmonella typhimurium. Mol Microbiol 6:2327–2337

    Article  PubMed  CAS  Google Scholar 

  77. Baños RC, Vivero A, Aznar S, et al (2009) Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS. PLoS Genet 5:e1000513

    Article  PubMed  Google Scholar 

  78. Barth M, Marschall C, Muffler A, et al (1995) Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli. J Bacteriol 177:3455–3464

    PubMed  CAS  Google Scholar 

  79. Stoebel DM, Free A, Dorman CJ (2008) Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology 154:2533–2545

    Article  PubMed  CAS  Google Scholar 

  80. Grillo AO, Brown MP, Royer CA (1999) Probing the physical basis for trp repressor-operator recognition. J Mol Biol 287:539–554

    Article  PubMed  CAS  Google Scholar 

  81. Hartwell LH, Hopfield JJ, Leibler S, et al (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  PubMed  CAS  Google Scholar 

  82. Ma HW, Kumar B, Ditges U, et al (2004) An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res 32:6643–6649

    Article  PubMed  CAS  Google Scholar 

  83. Balázsi G, Barabási AL, Oltvai ZN (2005) Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc Natl Acad Sci U S A 102:7841–7846

    Article  PubMed  Google Scholar 

  84. Freyre-González JA, Alonso-Pavón JA, Treviño-Quintanilla LG, et al (2008) Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach. Genome Biol 9:R154

    Article  PubMed  Google Scholar 

  85. Resendis-Antonio O, Freyre-González JA, Menchaca-Méndez R, et al (2005) Modular analysis of the transcriptional regulatory network of E. coli. Trends Genet 21:16–20

    Article  PubMed  CAS  Google Scholar 

  86. Shen-Orr SS, Milo R, Mangan S, et al (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68

    Article  PubMed  CAS  Google Scholar 

  87. Martínez-Antonio A, Janga SC, Thieffry D (2008) Functional organisation of Escherichia coli transcriptional regulatory network. J Mol Biol 381:238–247

    Article  PubMed  Google Scholar 

  88. Cerca N, Jefferson KK (2008) Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli. FEMS Microbiol Lett 283:36–41

    Article  PubMed  CAS  Google Scholar 

  89. Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330

    Article  PubMed  CAS  Google Scholar 

  90. Kaplan S, Bren A, Zaslaver A, et al (2008) Diverse two-dimensional input functions control bacterial sugar genes. Mol Cell 29:786–792

    Article  PubMed  CAS  Google Scholar 

  91. Lozada-Chávez I, Janga SC, Collado-Vides J (2006) Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res 34:3434–3445

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas M. Luscombe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Seshasayee, A.S.N., Sivaraman, K., Luscombe, N.M. (2011). An Overview of Prokaryotic Transcription Factors. In: Hughes, T. (eds) A Handbook of Transcription Factors. Subcellular Biochemistry, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9069-0_2

Download citation

Publish with us

Policies and ethics