Skip to main content

Genomics in the Discovery and Monitoring of Marine Biodiversity

  • Chapter
  • First Online:
Introduction to Marine Genomics

Abstract

Marine biodiversity encompasses a range of hierarchical levels, including genetic, species, ecosystem and functional diversity. Interactions among such levels determine ultimately the distribution and abundance, as well as evolutionary potential and resilience, of marine taxa. In the face of accelerating environmental change and ecosystem disruption, the detection and monitoring of structural and functional components becomes increasingly urgent. Classical ecological and conservation marine studies focused on species and communities- the emphasis has now shifted to enhancing our understanding of the relationships among the various components of biodiversity, especially their role in ecosystem services such as global nutrient recycling and climate. Here, we highlight the significance of genomics and genetic principles in elucidating the interactions among different biological levels of diversity, from genetic and cellular, to community and ecosystem-level processes. Genomic methods are especially powerful in disclosing previously undetected taxonomic (e.g. DNA barcoding), genetic (e.g. 454 sequencing) and functional (e.g. gene expression, analysis of metabolites) diversity, including the identification of new species and metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi M, Kanno T, Okamoto R, Itakura S, Yamaguchi M, Nishijima T (2003) Population structure of Alexandrium (Dinophyceae) cyst formation-promoting bacteria in Hiroshima Bay, Japan. Appl Environ Microbiol 69:6560–6568

    CAS  PubMed  Google Scholar 

  • Allen EE, Banfield JF (2005) Community genomics and microbial ecology and evolution. Nat Rev Genet 3:489–498

    CAS  Google Scholar 

  • Allen MJ, Martinez-Martinez J et al (2007) Use of microarrays to assess viral diversity: from genotype to phenotype. Environ Microbiol Apr 9(4):971–982

    CAS  PubMed  Google Scholar 

  • Allen MJ, Wilson WH (2008) Aquatic virus diversity accessed through omic techniques: a route map to function. Curr Opin Microbiol 11(3):226–232

    CAS  PubMed  Google Scholar 

  • Amann RI, Binder, BJ, Olson, RJ et al (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  Google Scholar 

  • Angel M (1992) Managing biodiversity in the oceans. In: Peterson M (ed) Diversity of oceanic life. CSIS, Washington

    Google Scholar 

  • Angly FE, Felts B et al (2006) The marine viromes of four oceanic regions. PLoS Biol 4(11):e368

    PubMed  Google Scholar 

  • Arnold WS, Hitchcock GL, Frischer ME, Wanninkhof R, Sheng P (2005) Dispersal of an induced larval cohort in a coastal lagoon. Limnol Oceanogr 50:587–597

    Google Scholar 

  • Arise JC (2004) Molecular Markers, Natural History, and Evolution 2nd ed. Sinauer Assoc Inc, Sunderland, Massachusetts

    Google Scholar 

  • Babcock DA, Wawrik B et al (2007) Rapid screening of a large insert BAC library for specific 16S rRNA genes using TRFLP. J Microbiol Methods 71(2):156–161

    CAS  PubMed  Google Scholar 

  • Barber P, Boyce SL (2006) Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proc R Soc B 273:2053–2061

    CAS  PubMed  Google Scholar 

  • Barki Y, Douek J, Graur D, Gateno D, Rinkevich B (2000) Polymorphism in soft coral larvae revealed by amplified fragment-length polymorphism (AFLP) markers. Mar Biol 136:37–41

    CAS  Google Scholar 

  • Beja O (2004) To BAC or not to BAC: marine ecogenomics. Curr Opin Biotechnol 15(3):187–190

    CAS  PubMed  Google Scholar 

  • Beja O, Aravind L et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289(5486):1902–1906

    CAS  PubMed  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nystro M (2004) Confronting the coral reef crisis. Nature 429:827–833

    CAS  PubMed  Google Scholar 

  • Bench SR, Hanson TE et al (2007) Metagenomic characterization of Chesapeake Bay virioplankton. Appl Environ Microbiol 73(23):7629–7641

    CAS  PubMed  Google Scholar 

  • Bhadury P, Austen MC et al (2006) Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Mar Ecol Prog Ser 320:1–9

    CAS  Google Scholar 

  • Biddle JF, Fitz-Gibbon S et al (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105(30):10583–10588

    CAS  PubMed  Google Scholar 

  • Biegala IC, Not F, Vaulot D, Simon N (2003) Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification, fluorescence-in-situ-hybridization and flow cytometry. Appl Environ Microbiol 69:5519–5529

    CAS  PubMed  Google Scholar 

  • Billard C (1994) Life cycles. In: Green JC, Leadbeater BSC (eds). The Haptophyte Algae, The Systematics Association Special, Vol. 51. Clarendon Press, Oxford, pp 167–186

    Google Scholar 

  • Blaxter M, Floyd R (2003) Molecular taxonomics for biodiversity surveys: already a reality. Trends Ecol Evol 18(6):268–269

    Google Scholar 

  • Blaxter M, Mann J et al (2005) Defining operational taxonomic units using DNA barcode data. Phil Trans R Soc London B 360. doi:10.1098/rstb.2005.1725

    CAS  Google Scholar 

  • Blouin MS (2000) Neutrality tests on mtDNA: unusual results from nematodes. J Hered 91(2):156–158

    CAS  PubMed  Google Scholar 

  • Blouin MS, Yowell CA, Courtney CH, Dame JB (1998) Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Mol Biol Evol 15(12):1719–1727

    CAS  PubMed  Google Scholar 

  • Blow N (2008) Exploring unseen communities. Nature 453:687–690

    CAS  PubMed  Google Scholar 

  • Bouchet P (2005) The mangitide of marine biodiversity. In: Duarte CM (ed) The exploration of marine biodiversity. Fundavión BBVA, Paris

    Google Scholar 

  • Bradshaw, WE and Holzapfel, M (2006) Evolutionary response to rapid climate change. Science 312:1477–1478

    CAS  PubMed  Google Scholar 

  • Breitbart M, Felts B et al (2004) Diversity and population structure of a near-shore marine-sediment viral community. Proc Biol Sci 271(1539):565–574

    PubMed  Google Scholar 

  • Bullard SG, Lindquist N, Hay ME (1999) Susceptibility of invertebrate larvae to predators: how common are post-capture larval defenses?. Mar Ecol Prog Ser 191:153–161

    Google Scholar 

  • Bulling MT, White PCL, Rafaelli D et al (2006) Using model systems to address the biodiversity-ecosystem functioning process. Mar Ecol Prog Ser 311:295–309

    Google Scholar 

  • Caron DA, Peele ER, Lim EL, Dennett MR (1999) Picoplankton and nanoplankton and their trophic coupling in surface waters of the Sargasso Sea south of Bermuda. Limnol Oceanogr 44:259–272

    Google Scholar 

  • Carvalho GR, van Oosterhout C, Hauser, L et al (2002) Measuring genetic variation in wild populations: from molecular markers to adaptive traits, In: Behringer, J Hails, RS, Godfrey C (eds) Genes in the Environment. Blackwell Science, pp. 91–111

    Google Scholar 

  • Chan RWK, Dixon PI, Peperrell JG et al (2003) Application of DNA-based techniques for the identification of whaler sharks (Carcharhinus spp.) caught in protective beach meshing and by recreational fisheries off the coast of New South Wales. Fish Bull 101:910–914

    Google Scholar 

  • Chapin FS, Walker BH et al (1997) Biotic control over the functioning of ecosystems. Science 277(5325):500–504

    CAS  Google Scholar 

  • Cock JM, Scornet D, Coelho S et al (2005) Marine Genomics and the exploration of marine biodiversity. Biodiversity Conservation in the Coastal Zone. “Exploring Marine Biodiversity: Scientific and Technological Challenges”, Madrid, 29th November 2005.

    Google Scholar 

  • Comtet T, Jollivet D, Khripounoff A et al (2000) Molecular and morphological identification of settlement-stage vent mussel larvae, Bathymodiolus azoricus (Bivalvia: Mytilidae), preserved in situ at active vent fields on the Mid-Atlantic Ridge. Limnol Oceanogr 45:1655–1661

    CAS  Google Scholar 

  • Costa FO, Carvalho GR (2007) The barcode of life initiative: synopsis and prospective societal impacts of DNA barcoding of Fish. Genom Soc Pol 3:29–40

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  Google Scholar 

  • Creer S (2008) New technologies. In: Lambshead PJD, Packer M (eds) Manual for the molecular barcoding of deep-sea nematodes. International Seabed Authority, United Nations, Kingston

    Google Scholar 

  • Culley AI, Lang AS et al (2006) Metagenomic analysis of coastal RNA virus communities. Science 312(5781):1795–1798

    CAS  PubMed  Google Scholar 

  • Cunningham C, Hikima J et al (2006) New resources for marine genomics: bacterial artificial chromosome libraries for the Eastern and Pacific oysters (Crassostrea virginica and C. gigas). Mar Biotechnol (NY) 8(5):521–533

    CAS  Google Scholar 

  • Danovaro R, Gambi C et al (2008) Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18:1–8

    CAS  PubMed  Google Scholar 

  • Danovaro R, Gambi C, Dell’Anno A et al (2008) Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18:1–8

    CAS  PubMed  Google Scholar 

  • Dasmahapatra KK, Mallet J (2006) DNA barcodes: recent successes and future prospects. Heredity 97:254–255

    CAS  PubMed  Google Scholar 

  • Deagle BE, Bax N, Hewitt CL, Patil JG (2003) Development and evaluation of a PCR-based test for detection of Asterias (Echinodermata : Asteroidea) larvae in Australian plankton samples from ballast water. Mar Freshwat Res 54:709–719

    CAS  Google Scholar 

  • DeLey P, DeLey IT et al (2005) An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Phil Trans R Soc London B 360:1945–1958

    CAS  Google Scholar 

  • DeLong EF (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469

    CAS  PubMed  Google Scholar 

  • DeLong EF and Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:336–342

    CAS  PubMed  Google Scholar 

  • de Tomaso AW, Weissman IL (2003) Construction and characterization of large-insert genomic libraries (BAC and fosmid) from the Ascidian Botryllus schlosseri and initial physical mapping of a histocompatibility locus. Mar Biotechnol (NY) 5(2):103–115

    Google Scholar 

  • Díez B, Pedrós-Alío C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ Microbial 67:2932–2941

    Google Scholar 

  • Dinsdale EA, Pantos O et al (2008) Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3(2):e1584

    PubMed  Google Scholar 

  • Doi RH, Igarashi RT (1965) Conservation of ribosomal and messenger ribonucleic acid cistrons in Bacillus species. J Bacteriol 90:384–390

    CAS  PubMed  Google Scholar 

  • Dubnau D, Smith I, Morell P, Marmur J (1965) Gene conservation in Bacillus species. I. Conserved genetic and nucleic acid base sequence homologies. Proc Natl Acad Sci USA 54(2):491–498

    CAS  PubMed  Google Scholar 

  • Duffy JE, Stachowicz JJ (2006) Why biodiversity is important to oceanography: potential roles of genetic, species, and trophic diversity in pelagic ecosystem processes. Mar Ecol Prog Ser 311:179–189

    Google Scholar 

  • Eisen JA (2007) Environmental shotgun sequencing: Its potential and challenges for studying the hidden world of microbes. PLoS Biol 5:e82

    PubMed  Google Scholar 

  • Eller G, Töbe K, Medlin LK (2007) A set of hierarchical FISH probes for the Haptophyta and a division level probe for the Heterokonta. J Plank Res 29:629–640

    CAS  Google Scholar 

  • Evans KM, Wortley AH, Mann DG (2007) An assessment of potential diatom “Barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in sellaphora (Bacillariophyta). Protist 158:349–364

    CAS  PubMed  Google Scholar 

  • Floyd R, Abebe E et al (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11(4):839–850

    CAS  PubMed  Google Scholar 

  • Fox CJ, Taylor MI et al (2008) Mapping the spawning grounds of Noth Sea cod (Gadus morhua) by direct and indirect means. Proc R Soc Lond 275:1543–1548

    Google Scholar 

  • Fox CJ, Taylor CJ, Pereyra R, Willasana MI, Rico C (2005) TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: Implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods. Mol Ecol 14:879–884

    CAS  PubMed  Google Scholar 

  • Fuchs BM, Spring S et al (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci U S A 104(8):2891–2896

    CAS  PubMed  Google Scholar 

  • Gescher C, Metfies K, Frickenhaus S, Knefelkamp B, Wiltshire K, Medlin LK (2008) Feasibility of assessing the community composition of prasinophytes at the helgoland roads sampling site with a DNA microarray. Appl Environ Microbiol 74:5305–5316

    CAS  PubMed  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL et al (1990) Genetic diversity in sargasso sea bacterloplankton. Nature (London) 345:60–63

    CAS  Google Scholar 

  • Goffredi SK, Jones WJ, Scholin CA, Marin R, Vrijenhoek RC (2006) Molecular detection of marine invertebrate larvae. Mar Biotech 8:149–160

    CAS  Google Scholar 

  • Gómez A, Wright PJ, Lunt DH et al (2007) Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proc R Soc B 274:199–207

    PubMed  Google Scholar 

  • Grassle FJ, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313–341

    Google Scholar 

  • Groben R, John U, Eller G, Lange M, Medlin LK (2004) Using fluorescently-labelled rRNA probes for hierarchical estimation of phytoplankton diversity. Nova Hedwigia 79:313–320

    Google Scholar 

  • Hajibabaei M, Singer GA, Hebert PD, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23(4):167–172

    CAS  PubMed  Google Scholar 

  • Handelsmann J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Google Scholar 

  • Hansen BW, Larsen JB (2005) Spatial distribution of velichoncha larvae (Bivalvia) identified by SSNM-PCR. J Shell Res 24:561–565

    Google Scholar 

  • Harding JM (1999) Selective feeding behavior of larval naked gobies (Gobiosoma bosc) and blennies (Chasmodes bosquianus and Hypsoblennius hentzi): preferences for bivalve veligers. Mar Ecol Prog Ser 179:145–153

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    CAS  Google Scholar 

  • Hoef-Emden K, Melkonian M (2003) Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights in a long-hidden dimorphism. Protist 154:371–409

    CAS  PubMed  Google Scholar 

  • Hoffmann AA, Willi Y (2008) Detecting genetic responses to environment change. Nature Rev Genet 9:421–432

    Google Scholar 

  • Hofmann GE, Gaines SE (2008) New tools to meet new challenges: Emerging technologies for managing marine ecosystems for resilience. BioScience 58(1):43–52

    Google Scholar 

  • Hosoi M, Hosoi-Tanabe S, Sawada H et al (2004) Sequence and polymerase chain reaction–restriction fragment length polymorphism analysis of the large subunit rRNA gene of bivalve: Simple and widely applicable technique for multiple species identification of bivalve larva. Fish Sci 70:629–637

    CAS  Google Scholar 

  • Huber JA, Welch DBM et al (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    CAS  PubMed  Google Scholar 

  • Hughes TP, Bellwood DR, Folke C, Steneck RS, Wilson J (2006) New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evol 20:380–386

    Google Scholar 

  • Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci 101:8898–9002

    Google Scholar 

  • Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8(7):R143

    PubMed  Google Scholar 

  • Igelsia-Rodriguez D, Schofield OM, Batley PJ, Medlin LK, Hayes PK (2006) Extensive intraspecific genetic diversity in the marine coccolithophorid Emiliania huxleyi: the use of microsatellite analysis in marine phytoplankton populations studies. J Phycol 42:526–536

    Google Scholar 

  • Ishizaka J, Harada K, Ishikawa K, Kiyosawa H, Furusawa H, Watanabe Y, Ishida H, Suzuki K, Handa N, Takahash M (1997) Size and taxonomic plankton community structure and carbon flow at the equator, 175°E during 1990–1994. Deep Sea Res II 44:1927–1949

    CAS  Google Scholar 

  • Janzen DH, Hajibabaei M, Burns JM et al (2005) Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Phil Trans R Soc B 360:1835–1845

    CAS  PubMed  Google Scholar 

  • John U, Groben R, Beszteri B, Medlin L (2004) Utility of Amplified Fragment Length Polymorphisms (AFLP) to analyse genetic structures within the Alexandrium tamarense species complex. Protist Jun 155(2):169–179

    CAS  PubMed  Google Scholar 

  • Jones WJ, Preston CM, Marin R, Scholin CA, Vrijenhoek RC (2008) A robotic molecular method for in situ detection of marine invertebrate larvae. Mol Ecol Res 8:540–550

    CAS  Google Scholar 

  • Jonston AW, Li Y, Ogilvie L (2005) Metagenomic marine nitrogen fixation- feast or famine? Trends Microbiol 13:416–420

    Google Scholar 

  • Karaiskou N, Triantafyllidis A, Alvarez P et al (2007) Horse mackerel egg identification using DNA methodology. Mar Ecol 28:429–434

    CAS  Google Scholar 

  • Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47:161–177

    CAS  PubMed  Google Scholar 

  • Kinlan BP, Gaines SD, Lester SE (2005) Propagule dispersal and the scales of marine community process. Div Distrib 11:139–148

    Google Scholar 

  • Kirby RR, Lindley JA (2005) Molecular analysis of continuous plankton recorder samples, an examination of echinoderm larvae in the North Sea. J Mar Biol Ass UK 85:451–459

    CAS  Google Scholar 

  • Kochzius M, Nölte M, Weber H et al (2008) Microarrays for identifying fishes. Mar Biotechnol 10:207–217

    CAS  PubMed  Google Scholar 

  • Lambshead PJD, Boucher G (2003) Marine nematode deep-sea biodiversity – hyperdiverse or hype?. J Biogeography 30(4):475–485

    Google Scholar 

  • Lawton JHD, Bignell E et al (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76

    CAS  Google Scholar 

  • Le Goff-Vitry MC, Chipman AD, Comtet T (2007) In situ hybridization on whole larvae: a novel method for monitoring bivalve larvae. Mar Ecol Prog Ser 343:161–172

    Google Scholar 

  • Lindley JA, Batten SD (2002) Long-term variability in the diversity of North Sea zooplankton. J Mar Biol Ass UK 82:31–40

    Google Scholar 

  • Lleonart J, Taconet M, Lamboeuf M (2006) Integrating information on marine species identification for fishery purposes. Mar Ecol Prog Ser 316:231–238

    Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alió C et al (2001) Unexpected diversity of small eukaryotes in deep sea Antarctic plankton. Nature 409:603–607

    PubMed  Google Scholar 

  • Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J, Olsen J, Perez KE, Stam W, Väinölä R, Viard F, Wares J (2008) Evaluating signatures of glacial refugia for North Atlantic marine organisms?. Ecology 89:S108–S122

    PubMed  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CTJ, Saxman PR, Farris RJ, Garrity GM, Olson GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174

    CAS  PubMed  Google Scholar 

  • Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495

    Google Scholar 

  • Mariani S, Uriz MJ, Turon X (2003) Methodological bias in the estimations of important meroplanktonic components from near-shore bottoms. Mar Ecol Prog Ser 253:67–75

    Google Scholar 

  • Markmann M, Tautz D (2005) Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Phil Trans R Soc London B 360:1917–1924

    CAS  Google Scholar 

  • Marko B, Lee SC, Rice AM et al (2004) Mislabelling of a depleted reef fish. Nature 430:309–310

    CAS  PubMed  Google Scholar 

  • Marta-Almeida M, Dubert J, Peliz A, Queiroga H (2006) Influence of vertical migration pattern on retention of crab larvae in a seasonal upwelling system. Mar Ecol Prog Ser 307:1–19

    Google Scholar 

  • Massana R, Terrado R, Forn I et al (2006) Distribution and abundance of unclutured heterotrophic flagellates in the world oceans. Env Microbiol 8:1515–1522

    CAS  Google Scholar 

  • Medlin LK (2007) If everything is everywhere, do they share a common gene pool?. Gene 405:180–183

    Google Scholar 

  • Medlin LK, Metfies K, Mehl H, Wiltshire K, Valentin K (2006) Picoplankton Diversity at the Helgoland Time Series Site as assessed by three molecular methods. Micro Ecol 167:1432–1451

    Google Scholar 

  • Metaxas A, Burdett-Coutts V (2006) Response of invertebrate larvae to the presence of the ctenophore Bolinopsis infundibulum, a potential predator. J Exp Mar Biol Ecol 334:187–195

    Google Scholar 

  • Metfies K, Hujic S, Lange M, Medlin L (2005) Electrochemical detection of the toxic dinoflagellate A. ostenfeldii with a DNA Biosensor. Biosen Bioselec 20:1349–1357

    CAS  Google Scholar 

  • Metfies K, Töbe K, Scholin C, Medlin LK (2006) Laboratory and field applications of ribosomal RNA probes to aid the detection and monitoring of harmful algae. In: Granéli E, Turner J (eds) Ecology of harmful algae. Springer, New York, pp 311–326

    Google Scholar 

  • Minagawa G, Miller MJ, Aoyama J, Wouthuyzen S, Tsukamoto K (2004) Contrasting assemblages of leptocephali in the western Pacific. Mar Ecol Prog Ser 271:245–259

    Google Scholar 

  • Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc UK 77(1):211–227

    Google Scholar 

  • Morgan TS, Rogers AD (2001) Specificity and sensitivity of microsatellite markers for the identification of larvae. Mar Biol 139:967–973

    CAS  Google Scholar 

  • Mou X, Sun S et al (2008) Bacterial carbon processing by generalist species in the coastal ocean. Nature 451:708–711

    CAS  PubMed  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    CAS  PubMed  Google Scholar 

  • Naeem S (2006) Expanding scales in biodiversity-based research: challenges and solutions for marine systems. Mar Ecol Prog Ser 311:273–283

    Google Scholar 

  • Noell CJ, Donnellan S, Foster R, Haigh L (2001) Molecular discrimination of garfish Hyporhamphus (Beloniformes) larvae in southern australian waters. Mar Biotechnol 3:509–514

    CAS  PubMed  Google Scholar 

  • Ogden R (2008) Fisheries Forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry. Fish Fisheries 9:462–472

    Google Scholar 

  • Pace B, Campbell LL (1971a) Homology of ribosomal ribonucleic acid of Desulfovibrio species with Desulfovibrio vulgaris. J Bacteriol 106(3):717–719

    CAS  PubMed  Google Scholar 

  • Pace B, Campbell LL (1971b) Homology of ribosomal ribonucleic acid diverse bacterial species with Escherichia coli and Bacillus stearothermophilus. J Bacteriol 107(2):543–547

    CAS  PubMed  Google Scholar 

  • Palumbi SR, McLeod KL, Grunbaum D (2008a) Ecosystems in action: lessons from marine ecology about recovery, resistance and reversibility. Bioscience 58:33–42

    Google Scholar 

  • Palumbi SR, Sandifer PA, Allan JD (2008b) Managing for ocean biodiversity to sustain marine ecosystem services. Front Ecol Environ. doi: 10.1890/070135

    Google Scholar 

  • Patil JG, Gunasekera RM, Deagle BE, Bax NJ (2005) Specific detection of pacific oyster (Crassostrea gigas) larvae in plankton samples using nested polymerase chain reaction. Mar Biotechnol 7:11–20

    CAS  PubMed  Google Scholar 

  • Peers G, Price NM (2006) Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 44:341–344

    Google Scholar 

  • Pegg GC, Snclair B, Briskey L et al (2006) MtDNA barcode identification of fish larvae in the southern Great Barrier Reef, Australia. Sci Mar 70:7–12

    CAS  Google Scholar 

  • Phillips RA, Petersen MK, Lilliendahl K et al (1999) Diet of the northern fulmar Fulmarus glacialis: reliance on commercial fisheries?. Mar Biol 135:159–170

    Google Scholar 

  • Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P, Fluharty D, Heneman B, Houde ED, Link J, Livingston PA, Mangel M, McAllister MK, Pope J, Sainsbury KJ (2004) Ecosystem-Based Fisheries Management. Science 305:346–347

    CAS  PubMed  Google Scholar 

  • Platt HM, Warwick RM (1983) Free-living marine nematodes. Part I British Enoplids. Cambridge University Press, Cambridge

    Google Scholar 

  • Pradillon F, Schmidt A, Peplies J, Dubilier N (2007) Species identification of marine invertebrate early stages by whole-larvae in situ hybridisation of 18S ribosomal RNA. Mar Ecol Prog Ser 333:103–116

    CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    CAS  PubMed  Google Scholar 

  • Quaiser A, Lopez-Garcia P et al (2008) Comparative analysis of genome fragments of Acidobacteria from deep Mediterranean plankton. Environ Microbiol 10:2704–2717

    CAS  PubMed  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: The barcode of life data system (http://www.barcodinglife.org). Mol Ecol Notes 7:355–364

  • Ray GC (1991) Coastal-zone biodiversity patterns. BioScience 41:490–498

    Google Scholar 

  • Richardson DE, Cowen RK (2004) Diversity of leptocephalus larvae around the island of Barbados (West Indies): relevance to regional distributions. Mar Ecol Prog Ser 282:271–284

    Google Scholar 

  • Richardson DE, Vanwye JD, Exum AM, Cowen RK, Crawford DL (2007) High-throughput species identification: from DNA isolation to bioinformatics. Mol Ecol Notes 7:199–207

    CAS  Google Scholar 

  • Rock J, Costa FO, Walker DI et al (2008) DNA barcodes for fish of the Antarctic Scotia Sea indicate priority groups for taxonomic and systematic focus. Antarctic Sci 20:253–262

    Google Scholar 

  • Rogers AD (2001) Molecular ecology and identification of marine invertebrate larvae. In: Atkinson D, Thorndyke M (eds) Environment and animal development: genes, life histories and plasticity. BIOS Scientific Publishers Ltd., Oxford, pp 29–69

    Google Scholar 

  • Rosel PE, Kocher TD (2002) DNA-based identification of larval cod in stomach contents of predatory fishes. J Exp Mar Biol Ecol 267:75–88

    Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotech 26:1117–1124

    CAS  Google Scholar 

  • Santaclara FJ, Espineira M, Vieites JM (2007) Molecular detection of Xenostrobus securis and Mytillus galloprovincialis larvae in galician coast (Spain). Mar Biotechnol 9:722–732

    CAS  PubMed  Google Scholar 

  • Santelli CM, Orcutt BN, Banning E et al (2008) Abundance and diversity of microbial life in ocean crust. Nature 453:653–656

    CAS  PubMed  Google Scholar 

  • Savolainen R, Cowan RS, Vogler AP (2005) DNA barcoding of life. Phil Trans R Soc Lond B 360:1805–1980

    CAS  Google Scholar 

  • Scherer-Lorenzen M (2005) Biodiversity and ecosystem functioning: basic principles. In: Wilhelm Barthlott, K Eduard L, Stefan P (eds) Biodiversity: structure and function. Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford. [http://www.eolss.net]

    Google Scholar 

  • Schratzberger M, Warr K et al (2007) Functional diversity of nematode communities in the southwestern North Sea. Mar Environ Res 63(4):368–389

    CAS  PubMed  Google Scholar 

  • Shanks AL, Brink L (2005) Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Mar Ecol Prog Ser 302:1–12

    Google Scholar 

  • Shearer TL, Coffroth MA (2006) Genetic identification of Caribbean scleractinian coral recruits at the flower garden banks and the florida keys. Mar Ecol Prog Ser 306:133–142

    CAS  Google Scholar 

  • Shearer TL, Coffroth MA (2008) Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Res 8:247–255

    CAS  Google Scholar 

  • Sigler MF, Hulbert LB, Lunsford CR et al (2006) Diet of Pacific sleeper shark, a potential Steller sea lion predator, in the north-east Pacific Ocean. J Fish Biol 69:392–405

    Google Scholar 

  • Simon N, Campbell L, Ornolfsdottir E et al (2000) Oligonucleotide probes for the identification of three algal groups by dot biot and fluorescent whole-cell hybridization. J EuR Microbial 47:76–84

    CAS  Google Scholar 

  • Smith CR, Austen MC et al (2000) Global change and biodiversity linkages across the sediment-water interface. Bioscience 50(12):1108–1120

    Google Scholar 

  • Snelgrove PVR, Austen MC et al (2000) Linking biodiversity above and below the marine sediment-water interface. BioScience 50(12):1076–1088

    Google Scholar 

  • Snelgrove P, Blackburn TH et al (1997) The importance of marine sediment biodiversity in ecosystem processes. Ambio 26:578–583

    Google Scholar 

  • Sogin ML, Morrison HG et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    CAS  PubMed  Google Scholar 

  • Stein JL, Marsh TL et al (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol 178(3):591–599

    CAS  PubMed  Google Scholar 

  • Suzuki MT, Preston CM et al (2004) Phylogenetic screening of ribosomal RNA gene-containing clones in Bacterial Artificial Chromosome (BAC) libraries from different depths in Monterey Bay. Microb Ecol 48(4):473–488

    CAS  PubMed  Google Scholar 

  • Taylor MI, Fox C, Rico I, Rico C (2002) Species-specific TaqMan probes for simultaneous identification of (Gadus morhua L.), haddock (Melanogrammus aeglefinus L.) and whiting (Merlangius merlangus L. Mol Ecol Notes 2:599–601

    CAS  Google Scholar 

  • Tzeneva VA, Heilig HG, van Vliet WA, Akkermans AD, de Vos WM, Smidt H (2008) 16S rRNA targeted DGGE fingerprinting of microbial communities. Methods Mol Biol 410:335–349

    CAS  PubMed  Google Scholar 

  • Umina PA, Weeks AR, Kearney MR et al (2005) A rapid shift in classic clinical pattern in Drosophila reflecting climate change. Science 308:691–693

    CAS  PubMed  Google Scholar 

  • Underwood AJ, Fairweather PG (1989) Supply-side ecology and marine benthic assemblages. Trends Ecol Evol 4:16–19

    CAS  PubMed  Google Scholar 

  • Vadopalas B, Bouma JV, Jackels CR, Friedman CS (2006) Application of real-time PCR for simultaneous identification and quantification of larval abalone. J Exp Mar Biol Ecol 334:219–228

    CAS  Google Scholar 

  • Van Straalen NM, Roelofs D (2006) An introduction to ecological genomics. Oxford University Press, Oxford

    Google Scholar 

  • Venter JC, Remington K et al (2004) Environmental genome sequencing of the Sargasso Sea. Science 304:66–74

    CAS  PubMed  Google Scholar 

  • Vera JC, Wheat CW, Fescemyer HW et al (2008) Rapid transcriptome characterisation for a non-model organism using 454 pyrosequencing. Mol Ecol 17:1636–1647

    CAS  PubMed  Google Scholar 

  • von der Heyden S, Lipnski MR, Matthee CA (2007) Species-specific genetic markers for identification of early life-history stages of Cape hakes, Merluccius capensis and Merluccius paradoxus in the southern Benguela. Curr J Fish Biol 70:262–268

    Google Scholar 

  • Webb CT (2007) What is the role of ecology in understanding ecosystem resilience?. BioScience 5:470–471

    Google Scholar 

  • Webb KE, Barnes DKA, Clark MS, Bowden DA (2006) DNA barcoding: A molecular tool to identify Antarctic marine larvae. Deep-Sea Res II 53:1053–1060

    CAS  Google Scholar 

  • Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55

    Google Scholar 

  • Williamson SJ, Rusch DB et al (2008) The Sorcerer II global ocean sampling expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS ONE 3(1):e1456

    PubMed  Google Scholar 

  • Wilson K, Thorndyke M, Nilsen F et al (2005) Marine systems: moving into the genomics era. Mar Ecol 26:3–16

    CAS  Google Scholar 

  • Witham TG, DiFazio SP, Schweitzer JA et al (2008) Extending genomics to natural communities and ecosystems. Science 320:492–495

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

  • Wong EH-K, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Res Int 41:828–837

    CAS  Google Scholar 

  • Worm B, Barbier EB, Baumont N et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    CAS  PubMed  Google Scholar 

  • Zhan A, Bao Z, Hu X et al (2008) Accurate methods of DNA extraction and PCR-based genotyping for single scallop embryos/larvae long preserved in ethanol. Mol Ecol Res 8:790–795

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Carvalho, G.R. et al. (2010). Genomics in the Discovery and Monitoring of Marine Biodiversity. In: Cock, J., Tessmar-Raible, K., Boyen, C., Viard, F. (eds) Introduction to Marine Genomics. Advances in Marine Genomics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8639-6_1

Download citation

Publish with us

Policies and ethics