Skip to main content

Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea

  • Chapter
Eutrophication in Coastal Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 207))

Abstract

Management of eutrophication in marine ecosystems requires a good understanding of nutrient cycles at the appropriate spatial and temporal scales. Here, it is shown that the biogeochemical processes controlling large-scale eutrophication of the Baltic Sea can be described with a fairly aggregated model: simple as necessary Baltic long-term large scale (SANBALTS). This model simulates the dynamics of nitrogen, phosphorus, and silica driven by the external inputs, the major physical transports, and the internal biogeochemical fluxes within the seven major sub-basins. In a long-term hindcast (1970–2003), the model outputs reasonably matched observed concentrations and fluxes. The model is also tested in a scenario where nutrient inputs are reduced to levels that existed over 100 years ago. The simulated response of the Baltic Sea trophic state to this very large reduction is verified by a similar simulation made with a much more complex processoriented model. Both models indicate that after initial, rather rapid changes the system goes into much slower evolution, and nutrient cycles would not become balanced even after 130 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlgren, I., T. Frisk & L. Kamp-Nielsen, 1988. Empirical and theoretical models of phosphorus loading, retention and concentration vs. lake trophic state. Hydrobiologia 170: 285–303.

    CAS  Google Scholar 

  • Andersson, P. M. & L. S. Andersson, 2006. Long Term Trends in the Seas Surrounding Sweden. Swedish Meteorological and Hydrological Institute, Reports of Oceanography, 32.

    Google Scholar 

  • Anonymous, 2001. Special issue ‘Man and the Baltic Sea’. Ambio 30: 171–326.

    Google Scholar 

  • Bartnicki, J., A. Gusev, T. Berg & H. Fagerli, 2005. Atmospheric Supply of Nitrogen, Lead, Cadmium, Mercury and Lindane to the Baltic Sea in 2003. EMEP Centres Joint Report for HELCOM, EMEP/MSC-W Technical Report 3/2005. http://www.helcom.fi/environment2/hazsubs/EMEP/en_GB/emep2003/.

    Google Scholar 

  • Bergström, S., H. Alexandersson, B. Carlsson, W. Josefsson, K.-G. Karlsson & G. Westing, 2001. Climate and hydrology of the Baltic Basins. In Wulff, F., L. Rahm & P. Larsson (eds), A Systems Analysis of the Baltic Sea. Springer, New York: 75–110.

    Google Scholar 

  • Brettar, I. & G. Rheinheimer, 1991. Denitrification in the central Baltic: evidence for H2S-oxidation as motor of denitrification at the oxic-anoxic interface. Marine Ecology Progress Series 77: 157–169.

    Article  CAS  Google Scholar 

  • Conley, D. J., 1997. Riverine contribution of biogenic silica to the oceanic silica budget. Limnology and Oceanography 42: 774–777.

    CAS  Google Scholar 

  • Conley, D. J., A. Stockenberg, R. Carman, R. W. Johnstone, L. Rahm & F. Wulff, 1997. Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea. Estuarine Coastal and Shelf Science 45: 591–598.

    Article  CAS  Google Scholar 

  • Gran, V. & H. Pitkänen, 1999. Denitrification in estuarine sediments in the eastern Gulf of Finland, Baltic Sea. Hydrobiologia 393: 107–115.

    Article  CAS  Google Scholar 

  • Granat, L., 2001. Deposition of nitrate and ammonium from the atmosphere to the Baltic Sea. In Wulff, F., L. Rahm & P. Larsson (eds), A Systems Analysis of the Baltic Sea. Springer, New York: 133–148.

    Google Scholar 

  • Gustafsson, B., 1999. Simulation of the long-term circulation of the Baltic Sea. Proceedings of the BASYS conference, Warnemünde, Germany: 147–153.

    Google Scholar 

  • Gustafsson, B., 2003. A time-dependent coupled-basin model of the Baltic Sea. Report C47. Earth Sciences Centre, Göteborg University.

    Google Scholar 

  • HELCOM, 1997. Airborne pollution load to the Baltic Sea, 1991–1995. Baltic Sea Environment Proceedings No. 69.

    Google Scholar 

  • HELCOM, 2004. The fourth Baltic Sea pollution load compilation (PLC-4). Baltic Sea Environment Proceedings No. 93.

    Google Scholar 

  • Kähler, P., 1991. Eutrophication and sediment denitrification in coastal marine waters, the example of Kiel Bight. Kieler Meeresforschungen Sonderheft 8: 112–116.

    Google Scholar 

  • Larsson, U., S. Hajdu, J. Walve & R. Elmgren, 2001. Estimating Baltic nitrogen fixation from the summer increase in upper mixed layer total nitrogen. Limnology and Oceanography 46: 811–820.

    Article  CAS  Google Scholar 

  • Markager, S. & L. Storm, 2003. Miljøeffektvurdering for Havmiljøet Del 1: Empirisk modellering af miljøtilstanden i de åbne indre farvande. Rapport fra Institut for Miljøvurdering.

    Google Scholar 

  • Nehring, D., 1987. Temporal variations of phosphate and inorganic nitrogen compounds in central Baltic deep basins. Limnology and Oceanography 32: 494–499.

    Article  CAS  Google Scholar 

  • Nixon, S. W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219.

    Google Scholar 

  • Papush, L. & Å. Danielsson, 2006. Silicon in the marine environment: dissolved silica trends in the Baltic Sea. Estuarine, Coastal and Shelf Science 67: 53–66.

    Article  CAS  Google Scholar 

  • Pearson, T. H. & R. Rosenberg, 1992. Energy-flow through the SE Kattegat — a comparative examination of the eutrophication of a coastal marine ecosystem. Netherlands Journal of Sea Research 28: 317–334.

    Article  Google Scholar 

  • Raateoja, M., J. Seppälä & H. Kuosa, 2004. Bio-optical modelling of primary production in the SW Finnish coastal zone, Baltic Sea: fast repetition rate fluorometry in Case 2 waters. Marine Ecology Progress Series 267: 9–26.

    Article  Google Scholar 

  • Rahm, L., A. Jönsson & F. Wulff, 2000. Nitrogen fixation in the Baltic Proper — an empirical study. Journal of Marine Systems 25: 239–248.

    Article  Google Scholar 

  • Richardson, K. & J. P. Heilmann, 1995. Primary production in the Kattegat — past and present. Ophelia 41: 317–328.

    Google Scholar 

  • Rönnberg, C. & E. Bonsdorff, 2004. Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia 514: 227–241.

    Article  Google Scholar 

  • Sandberg, J., R. Elmgren & F. Wulff, 2000. Carbon flows in the Baltic Sea food webs — a re-evaluation using a mass balance approach. Journal of Marine Systems 25: 253–280.

    Article  Google Scholar 

  • Savchuk, O. P., 1986. The study of the Baltic Sea eutrophication problems with the aid of simulation models. Baltic Sea Environment Proceedings 19: 51–61.

    Google Scholar 

  • Savchuk, O. P., 1999. Simulation of the Baltic Sea eutrophication. Proceedings of the BASYS Conference, Warnemünde, Germany: 108–122.

    Google Scholar 

  • Savchuk, O. P., 2002. Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model. Journal of Marine Systems 32: 253–280.

    Article  Google Scholar 

  • Savchuk, O. P., 2005. Resolving the Baltic Sea into 7 sub basins: N and P budgets for 1991–1999. Journal of Marine Systems 56: 1–15.

    Article  Google Scholar 

  • Savchuk, O. P. & V. V. Volkova, 1990. Forecasting the future state of the Baltic Sea eutrophication. Proceedings of the 17th Conference of Baltic Oceanographers, Norrköping, Sweden.

    Google Scholar 

  • Savchuk, O. & F. Wulff, 1999. Modelling regional and largescale responses of Baltic Sea ecosystems to nutrient reductions. Hydrobiologia 393: 35–43.

    Article  CAS  Google Scholar 

  • Savchuk, O. & F. Wulff, 2001. A model of the biogeochemical cycles of nitrogen and phosphorus in the Baltic. In Wulff, F., L. Rahm & P. Larsson (eds), A Systems Analysis of the Baltic Sea. Springer, New York: 373–415.

    Google Scholar 

  • Savchuk, O. & F. Wulff, 2007. Modeling the Baltic Sea eutrophication in a decision support system. Ambio 36: 141–148.

    Article  CAS  Google Scholar 

  • Savchuk, O. P., F. Wulff, S. Hille, C. Humborg & F. Pollehne, 2008. The Baltic Sea a century ago — a reconstruction from model simulations, verified by observations. Journal of Marine Systems 74: 485–494.

    Article  Google Scholar 

  • Schernewski, G. & T. Neumann, 2005. The trophic state of the Baltic Sea a century ago: a model simulation study. Journal of Marine Systems 53: 109–124.

    Article  Google Scholar 

  • Schneider, B., G. Nausch, H. Kubsch & I. Peterson, 2002. Accumulation of total CO2 during stagnation in the Baltic Sea deep water and its relationship to nutrient and oxygen concentrations. Marine Chemistry 77: 277–291.

    Article  CAS  Google Scholar 

  • Sjöberg, S., F. Wulff & P. Wählstrom, 1972. Computer simulations of hydrochemical and biological processes in the Baltic. Askö Laboratory Contributions 1: 1–91.

    Google Scholar 

  • Sokolov, A. & F. Wulff, 1999. SwingStations: a web-based client tool for the Baltic environmental database. Computers & Geosciences 25: 863–871.

    Article  Google Scholar 

  • Sokolov, A., A. A. Andrejev, F. Wulff & M. Rodriguez Medina, 1997. The data assimilation system for data analysis in the Baltic Sea. Systems Ecology Contributions 3: 1–66.

    Google Scholar 

  • Stålnacke, P., A. Grimvall, K. Sundblad & A. Tonderski, 1999. Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993. Environmental Monitoring and Assessment 58: 173–200.

    Article  Google Scholar 

  • Theil, H., 1961. Economic Forecasts and Policy. North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Tuominen, L., A. Heinänen, J. Kuparinen & L. P. Nielsen, 1998. Spatial and temporal variability of denitrification in the sediments of the northern Baltic Proper. Marine Ecology Progress Series 172: 13–24.

    Article  CAS  Google Scholar 

  • Vahtera, E., D. Conley, B. Gustafson, H. Kuosa, H. Pitkänen, O. Savchuk, T. Tamminen, N. Wasmund, M. Viitasalo, M. Voss & F. Wulff, 2007. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36: 186–193.

    Article  CAS  Google Scholar 

  • Voss, M., K.-C. Emeis, S. Hille, T. Neumann & J. W. Dippner, 2005. Nitrogen cycle of the Baltic Sea from an isotopic perspective. Global Biogeochemical Cycles 19 (GB3001): 1–15.

    Article  CAS  Google Scholar 

  • Wasmund, N., A. Andrushaitis, E. Lysiak-Pastuszak, B. Müller-Karulis, G. Nausch, T. Neumann, H. Ojaveer, I. Olenina, L. Postel & Z. Witek, 2001a. Trophic status of the south-eastern Baltic Sea: a comparison of coastal and open areas. Estuarine, Coastal and Shelf Science 53: 849–864.

    Article  CAS  Google Scholar 

  • Wasmund, N., M. Voss & K. Lochte, 2001b. Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Marine Ecology Progress Series 214: 1–14.

    Article  CAS  Google Scholar 

  • Wasmund, N., G. Nausch, B. Schneider, K. Nagel & M. Voss, 2005. Comparison of nitrogen fixation rates determined with different methods: a study in the Baltic Proper. Marine Ecology Progress Series 297: 23–31.

    Article  CAS  Google Scholar 

  • Wulff, F. & A. Stigebrandt, 1989. A time-dependent budget model for nutrients in the Baltic Sea. Global Biogeochemical Cycles 3: 53–78.

    Article  Google Scholar 

  • Wulff, F., A. Stigebrandt & L. Rahm, 1990. Nutrient dynamics of the Baltic Sea. Ambio 19: 126–133.

    Google Scholar 

  • Wulff, F., E. Bonsdorff, I.-M. Gren, S. Johansson & A. Stigebrandt, 2001a. Giving advice on cost effective measures for a cleaner Baltic Sea: a challenge for science. Ambio 30: 254–259.

    CAS  Google Scholar 

  • Wulff, F., L. Rahm & P. Larsson (eds), 2001b. A Systems Analysis of the Baltic Sea. Ecological Studies, Vol. 148. Springer, Berlin.

    Google Scholar 

  • Wulff, F., O. Savchuk, A. Sokolov, C. Humborg & C. M. Mörth, 2007. Management options and effects on a marine ecosystem: assessing the future of the Baltic. Ambio 36: 243–249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Savchuk, O.P., Wulff, F. (2009). Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea. In: Andersen, J.H., Conley, D.J. (eds) Eutrophication in Coastal Ecosystems. Developments in Hydrobiology, vol 207. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3385-7_18

Download citation

Publish with us

Policies and ethics