Skip to main content

Effect of Metal Toxicity on Plant Growth and Metabolism: I. Zinc

  • Chapter
  • First Online:
Sustainable Agriculture

Abstract

Zinc toxicity and problems with regard to tolerance and ecological significance are briefly discussed. Differential tolerance of plant genotypes exposed to zinc toxicity is a promising approach to enrich our understanding of zinc tolerance in plants. Knowledge concerning the physiology and biochemistry with regard to phytotoxicity, uptake and transport of zinc and tolerance and its characterization are also discussed. The cytotoxic effects of zinc on plants are elucidated. The major change was seen in the nucleus of the root tip cells due to zinc toxicity. The chromatin material was highly condensed and some of the cortical cells showed disruption and dilation of nuclear membrane in presence of 7.5 mM zinc. The cytoplasm became structureless, disintegration of cell organelles and the development of vacuoles were also observed. The number of nucleoli also increased in response to zinc resulting in the synthesis of new protein involved in heavy metal tolerance. This review may help in interdisciplinary studies to assess the ecological significance of metal stress.

Résumé Effet de la toxicité des métaux sur la croissance et le métabolisme des plantes: I. Zinc.

La toxicité du zinc et les problèmes de tolérance ou de conséquence écologique liés sont rarement discutés. L’approche en terme de tolérance différentielle des génotypes de plantes exposées à la toxicité du zinc est prometteuse pour l’enrichissement de notre compréhension de la tolérance des plantes au zinc. Les connaissances de la physiologie et la biochimie face à la phytotoxicité, à l’absorption et au transport du zinc, ainsi que la tolérance et sa caractérisation sont aussi discutées dans ce papier. Les effets cytotoxiques du zinc sur les plantes sont maintenant élucidés. La modification majeure concerne la noyau des cellules de l’extrémité des racines. La chromatine est fortement condensée et certaines des cellules corticales montrent la rupture et la dilatation de leur membrane nucléaire en présence de 7.5 mM de zinc. De plus, le cytoplasme perd sa structure, la désintégration d’organites et le développement de vacuoles sont aussi observés. Enfin, le nombre de nucléoles augmente en réponse au zinc. Ils résultent de la synthèse d’une nouvelle protéine impliquée dans la tolérance aux métaux lourds. Cette synthèse bibliographique pourra aider les études interdisciplinaires à évaluer les conséquences écologiques des stress dus aux métaux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla M., Nair B.M., Chandra R.K., Health effects and interactions of essential and toxic elements, Nutr. Res. 1 (1985): 1–751.

    Google Scholar 

  • Adriano D.C., Trace Elements in the Terrestrial Environment. Springer, New York, 1970.

    Google Scholar 

  • Ambler J.E., Brown J.C., Gauch H.G., Effect of zinc on translocation of iron in soybean plants, Plant Physiol. 46 (1970) 320–323.

    Article  PubMed  CAS  Google Scholar 

  • Amado-Filho G.M., Karez C.S., Andrade L.R., Yoneshigue-Valentin Y., Pfeiffer W.C., Effects on growth and accumulation of zinc in six seaweed species. Ecotoxico, Environ. Safety 37 (1997) 223–228.

    Google Scholar 

  • Antonovics J., Bradshaw A.D., Turner R.G., Heavy metal tolerance in plants, Adv. Ecol. Res. 7 (1971): 1–85.

    Article  Google Scholar 

  • Barcelo J., Poschenrieder Ch., Plant water relations as affected by heavy metal stress: a review, J. Plant Nutr. 13 (1990) 1–37.

    Article  CAS  Google Scholar 

  • Baker A.J.M., Ecophysiological aspects of zinc tolerance in Silene maritime, New Phytol. 80 (1978) 635–642.

    Article  CAS  Google Scholar 

  • Baker A.J.M., Metal tolerance, New Phytol. 106 (1987) 93–111.

    Article  CAS  Google Scholar 

  • Baker A.J.M., Walker P.L., Ecophysiology of metal uptake by tolerant plants, in: Shaw A.J. (Ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC, Boca Raton, FL, 1990, pp. 155–172.

    Google Scholar 

  • Baker N.R., Fernyhough P., Meek I.F., Light dependent inhibition of photosynthetic electron transport by zinc, Physiol. Plant. 56 (1982) 217–222.

    Article  CAS  Google Scholar 

  • Beckett P.H.T., Davis, R.D., Upper critical levels of toxic elements in plants, New Phytol. 79 (1977) 95–106.

    Article  CAS  Google Scholar 

  • Beckett P.H.T., Davis, R.D., The additivity of the toxic effects of Cu, Ni and zinc in young barley, New Phytol. 81 (1978) 155–173.

    Article  CAS  Google Scholar 

  • Bert V., MacNair M.R., DeLaguerie P., Saumitoulaprade., Petit D., Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae), New Phytol. 146 (2000) 225–233.

    Article  CAS  Google Scholar 

  • Bjerre G.K., Schierup H.H., Uptake of six heavy metals by Oat as influenced by soil type and additions of cadmium, lead, zinc and copper, Plant Soil 88 (1985) 57–69.

    Article  CAS  Google Scholar 

  • Bollard E.G., Butler G.W., Mineral nutrition of plants, Ann. Rev. Plant Physiol. 17 (1966) 77–112.

    Article  CAS  Google Scholar 

  • Bradshaw A.D., McNeilly T., Evolution and Pollution. Edward Arnold, London, 1981.

    Google Scholar 

  • Brown J.C., Effect of Zn stress on factors affecting Fe uptake in navy beans, J. Plant Nutr. 1 (1979) 171–183.

    Article  CAS  Google Scholar 

  • Brown J.C., Jones W.E., Heavy metal toxicity in plants. 1. A crisis in embryo. Commun, Soil Sci. Plant Anal. 6 (1975) 421–438.

    Google Scholar 

  • Brown J.C., Ambler, J.E., Chaney, R.L., Foy, C.D., Differential responses of plant genotypes to micronutrients, in: Mortvedt J.J., Giordano P.M., Lindsay W.L. (Eds.), Micronutrients in Agriculture, Madison, WI, Soil Sci. Soc. Am., 1972, pp. 389–418.

    Google Scholar 

  • Cayton M.T.C., Reyes E.D and Neue H.U., Effect of zinc fertilization on the mineral nutrition of rice differing in tolerance to zinc deficiency, Plant Soil 87 (1985) 319–327.

    Google Scholar 

  • Chardonnens A.N., Koevoets P.L.M., van Zanten A., Schat H., Verkleij J.A.C., Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silene vulgaris, Plant Physiol. 120 (1999) 779–785.

    Article  PubMed  CAS  Google Scholar 

  • Chavan A.S., Banerjee N.K., Fe-Zn interaction in a black loamy soil as studied on rice crop, Ind. Soc. Soil Sci. 28 (1980) 203–205.

    CAS  Google Scholar 

  • Chaney R.L., Metals in plants absorption mechanisms, accumulation, and tolerance. Proceedings of the Symposium on Metals Biosphere, University of Guelph, Ontario, 1975, pp. 79–99.

    Google Scholar 

  • Chaney P.L., White M.C., Simon P.W., Plant uptake of heavy metals from sewage sludge applied to land, in: Proceedings of the National Conference Munic Sludge Management, Rockville, MD (1975), pp. 167–178.

    Google Scholar 

  • Chaudhry F.M., Alam S.M., Rashid A., Latif A., Mechanism of differential susceptibility of two rice varities to Zn deficiency, Plant Soil 46 (1977) 637–642.

    Article  CAS  Google Scholar 

  • Chowdhury B.A., Chandra R.K., Biological and health implications of toxic heavy metal and essential trace element interactions, Prog. Food Nutr. Sci. 11 (1987) 55–113.

    PubMed  CAS  Google Scholar 

  • Clijsters H., VanAssche F., Inhibition of photosynthesis by heavy metals, Photosynth. Res. 7 (1985) 31–40.

    Article  CAS  Google Scholar 

  • Collins J.C., Zinc, in: Lepp, N.W. (Ed.), The Effect of Heavy Metal Pollution on Plants. Vol. 1, Applied Science Publishers, London, 1981, pp. 145–170.

    Google Scholar 

  • Cumming J.R., Taylor G.J., Mechanism of metal tolerance in plants: adaptation for exclusion of metal ions from the cytoplasm, in: Alscher R.G., Cumming J.R. (Eds.), Stress Responses in Plants: Adaptation and Acclimation. Wiley, New York (1990), pp. 329–356.

    Google Scholar 

  • Cunnigham J.D., Keenay D.R., Ryan J.A., Phytotoxicity and uptake of metals added to soils as inorganic salts or in sewage sludge, J. Environ. Qual. 4 (1975) 460–462.

    Article  Google Scholar 

  • Davis J.G., Parker M.B., Zinc toxicity symptom development and partioning of biomass and zinc in peanut plants, J. Plant Nutr. 16 (1993) 2353–2369.

    Article  CAS  Google Scholar 

  • Davis K.L., Davies M.S., Francis D., The effects of zinc on cell viability and on mitochondrial structure in contrasting cultivars of Festuca rubra L.– a rapid test for zinc tolerance, Environ. Pollu. 88 (1995) 109–113.

    Google Scholar 

  • Daviscarter J.G., Shuman L.M., Influence of testure and pH of baolinitic soils on zinc fractions and zinc uptake by peanuts, Soil Sci. 155 (1993) 376–384.

    Article  CAS  Google Scholar 

  • Devlin R.M., Plant Physiology. Reinhold, New York, 1967, pp. 564–580.

    Google Scholar 

  • Diaz G., Azcon-Aquilar C., Honrubia M., Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides, Plant Soil 180 (1996): 241–249.

    Article  CAS  Google Scholar 

  • Doyar M.A., Van Hai Tang., Effect of P, N and HCO3 levels in the nutrient solution on rate of zinc absorption by rice roots and zinc content in plants, Z. Pflanzenphysiol. 98 (1980) 203–212.

    Google Scholar 

  • Earley E.M., Minor element studies with soybeans. I. Varietal reactions to concentrations of zinc in excess of the nutritional requirement, J. Am. Soc. Agron. 35 (1943) 1012–1023.

    Google Scholar 

  • Ernst W.H.O., Schwermettallvegetation der Erde. Stuttgart. G. Fischer Verlag (1974).

    Google Scholar 

  • Ernst W.H.O., Physiology of heavy metal resistance in plants, Proc. Int. Conf. Heavy Metals Environ. 94 (1977) 121–136.

    Google Scholar 

  • Ernst W.H.O., Effects of heavy metals in plants at the cellular and organismic level, in: Schuurmann G., Markert B. (Eds.), Bioaccumulation and Biological Effects of Chemicals. Wiley/Spektrum Akademischer Verlags, New York/Heidelberg, 1998, pp. 587–620.

    Google Scholar 

  • Foy C.D., Chaney R.L., White M.C., The physiology of metal toxicity in plants, Ann. Rev. Plant Physiol. 29 (1978) 511–566.

    Article  CAS  Google Scholar 

  • Frey B., Keller C., Zierold K., Schulin R., Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens, Plant Cell Environ. 23 (2000) 675–687.

    Article  CAS  Google Scholar 

  • Fujii T., Presence of zinc in nucleoli and its possible role in mitosis, Nature 174 (1954) 1108–1109.

    Article  PubMed  CAS  Google Scholar 

  • Garty J., Karary Y., Harel J., Effect of low pH, heavy metals and anions on chlorophyll degradation in the lichen Ramalina duriaei (De Not) Bagl, Environ. Exp. Bot. 32 (1992) 229–241.

    Article  CAS  Google Scholar 

  • Gebhart E., Chromosome damage in individuals exposed to heavy metals, Toxicol. Environ. Chem. 8 (1984) 253–266.

    Article  Google Scholar 

  • Gerloff G.C., Comparative mineral nutrition of plants, Ann. Rev. Plant Physiol. 14 (1963) 107–124.

    Article  CAS  Google Scholar 

  • Gianquinto G., AbuRayyan A., Ditola L., Piccotino D., Pezzarossa B., Interaction effects of phosphorous and zinc on photosynthesis, growth and yield of dwarf bean grown in two environments, Plant Soil. 220 (2000) 219–228.

    Article  CAS  Google Scholar 

  • Godbold D.L., Huttermann A., Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest die-back, Environ. Pollut. (Series A) 38 (1985) 375–381.

    Article  CAS  Google Scholar 

  • Gregory R.P.G., Bradshaw A.D., Heavy metal tolerance in populations of Agrostis tenuis Sibth. And other grasses, New Phytol. 64 (1965) 131–143.

    Article  CAS  Google Scholar 

  • Grill E., Winnacker E.L., Zenk M.H., Phytochelatins, a class of heavy metal binding peptides from plants, are functionally analogous to metallothioneins, Proc. Natl. Acad. Sci., USA. 84 (1987) 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Hacisalihoglu G., Hart J.J., Kochian L.V., High- and low- affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol., 125 (2001) 456–463.

    Article  PubMed  CAS  Google Scholar 

  • Hall J.L., Cellular mechanisms for heavy metal detoxification and tolerance, J. Exp. Bot. 53 (2002) 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hampp R., Beulron K., Ziegler H., Effects of zinc and cadmium on photosynthetic CO2-fixation and Hill activity of isolated spinach chloroplasts, Z. Pflanzenphysiol. 73 (1976) 336–344.

    Google Scholar 

  • Hertstein U., Jager, H.J., Tolerances of different populations of three grass species to cadmium and other metals, Environ. Exp. Bot. 26 (1986): 309–319.

    Article  CAS  Google Scholar 

  • Hewitt E.J., in: Robb D.A., Pierpoint W.S. (Eds), Metals and Micronutrients: Uptake and Utilization by Plants. Academic Press, London, 1983, pp. 277–300.

    Google Scholar 

  • Hinesly T.D., Redborg K.E., Pietz R.I., Ziegler E.L., Cadmium and zinc uptake by Corn (Zea mays L.) with repeated applications of sewage sludge, J. Agril. Food Chem. 32 (1984) 155–163.

    Article  CAS  Google Scholar 

  • Hodgson J.F., Chemistry of the micronutrients elements in soil, Adv. Agron. 15 (1963) 119–159.

    Article  Google Scholar 

  • Hodgson J.F., Contribution of metal-organic complexing agents to the transport of metals to roots, Soil Sci. Soc. Am. Proc. 33 (1969) 68–75.

    Article  CAS  Google Scholar 

  • Jones R.G.W., Sutcliffe M., Marshall C., Physiological and biochemical basis for heavy metal tolerance in clones of Agrostis tenuis, in: Samish R.M. (Ed), Recent Advances in Plant Nutrition, Vol. 2. Gorden & Breach, New York, 1971, pp. 275–281.

    Google Scholar 

  • Kaya C., Higgs, D., Growth enhancement by supplementary phosphorous and iron in tomato cultivars grown hydroponically at high zinc, J. Plant Nutr. 24 (2001) 1861–1870.

    Article  CAS  Google Scholar 

  • Lasat M.M., Pence N.S., Garvin D.F., Ebbs S.D., Kochian L.V., Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens, J. Exp. Bot. 51 (2000) 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Lepp N.W., Dickison N.M., Fungicide-derived copper on plantation crops, in: Ross S.M. (Ed.), Toxic Metals in Soil-Plant Systems. Wiley, Chichester, L. K., 1994, pp 367–393.

    Google Scholar 

  • Levitt J., Response of Plants to Environmental Stress. Academic Press, New York, 1980.

    Google Scholar 

  • Lindsay W.L., Inorganic phase equilibria of micronutrients in soils, in: Mortvedt J.J., Giordano P.M., Linsay W.L. (Eds.), Micronutrients in Agriculture. Madison, WI, Soil. Sci. Soc. Am., 1972, pp. 389–418.

    Google Scholar 

  • Lindsay W.L., Role of chelatin in micronutrient availability, in: Carson E.W. (Ed.), The Plant Root and Its Environment. University Press Virginia, Charlottesville, VA, 1974, pp. 508–524.

    Google Scholar 

  • Longnecker N.E., Robson A.D., Distribution and transport of zinc in plants, in: Robson A.D. (Ed.), Zinc in Soils and Plants. Kluwer, Dordrecht, the Netherlands, 1993, pp. 79–91.

    Chapter  Google Scholar 

  • Lorimer G.H., The carboxylation and oxygenation of ribulose − 1,5- bisphosphate: the primary events in photosynthesis and photorespiration, Ann. Rev. Plant Physiol. 32 (1981) 349–383.

    Article  CAS  Google Scholar 

  • Lorimer G.H., Miziorko H.M., RuBP carboxylase: the mechanism of activation and its relation to catalysis, in: Akoyunoglou G. (Ed.), Regulation of Carbon Metabolism. Phtosynthesis. IV. Balaban Int. Sci. Serv., Philadelphia, PA, 1981, pp. 3–16.

    Google Scholar 

  • Lyngby J.E., Brix H., Schierup H.H., Absorption and translocation of Zn in algrass (Zostera marina L.), J. Exp. Mar. Biol. Ecol. 58 (1982) 259–270.

    Article  CAS  Google Scholar 

  • MacLean A.J., Cadmium in different plant species and its availability in soils as influenced by organic matter and additions of lime, P, Cd and Zn, Can. J. Soil Sci. 56 (1976) 129–138.

    Article  CAS  Google Scholar 

  • Madhava Rao, K.V., Sresty, T.V.S., Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh in response to Zn and Ni stresses, Plant Sci. 157 (2000) 113–128.

    Article  PubMed  CAS  Google Scholar 

  • Malea, P., Kevrekidis, T., Haritonidis S., The short-term uptake of zinc and cell mortality of the sea grass Halophila stipulecea (Forsk.) Aschers, Israel J. Plant Sci. 43 (1995) 21–30.

    CAS  Google Scholar 

  • Marschner H., Mineral Nutrition of Higher Plants. Academic Press, London, 1986, pp. 300–312.

    Google Scholar 

  • Marschner H., Miniral Nutrition of Higher Plants, 2nd Edition. Academic Press, London, 1995.

    Google Scholar 

  • Mathys W., Comparative investigations of the uptake of zinc by resistant and sensitive populations of Agrostis tenuis Sibth, Flora 162 (1973) 492–499.

    CAS  Google Scholar 

  • Mathys W., The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc resistance in herbage plants, Physiol. Plant. 40 (1977a) 130–136.

    Article  CAS  Google Scholar 

  • Mathys W., The role of malate in zinc tolerance, Proc. Int. Conf. Heavy Metals Environ. 2 (1977b) 97–120.

    Google Scholar 

  • McKenna J.M., Chaney R.L., Williams F.M., The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and Spinach, Environ. Pollut. 79 (1993) 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Meharg A.A., The role of plasmalemma in metal tolerance in angiosperms, Physiol. Plant. 88 (1993) 191–198.

    Article  CAS  Google Scholar 

  • Michaelis A., Takehisa R.S., Rieger R., Aurich, O., Ammonimum chloride and zinc sulfate pretreatments reduce the yield of chromatid aberrations induced by TEM and maleic hydrazide in Vicia faba, Mutat. Res. 173 (1986) 187–191.

    Article  CAS  Google Scholar 

  • Miner G.S., Gutierrez R, King, L.D., Soil factors affecting plant concentrations of cadmium, copper and zinc on sludge-amended soils, J. Environ. Qual. 26 (1997) 989–994.

    Google Scholar 

  • Mukherjee, A., Sharma, A., Effect of pretreatment on metal cytotoxicity in plants, Indian Bot. Reptr. 4 (1985) 76–78.

    CAS  Google Scholar 

  • Nanson A., McElroy W.D., Modes of action of the essential mineral elements. In: Plant Physiology: A Treatise. Steward F.C. (Ed.), Vol. 3, Academic Press, New York, 1963, pp. 451–521.

    Google Scholar 

  • Neumann, D., Zur Nieden U., Schwieger, W., Leopoold, I and Lichtenberger, O., Heavy metal tolerance of Minuartia verna, J. Plant Physiol. 151 (1997) 101–108.

    Google Scholar 

  • Ochi T., Ishigura T., Osakawa M., Participation of active oxygen species in the induction of DNA single-strand scissions by cadmium chloride in cultured chinese hamster cells, Mutat. Res. 122 (1983) 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Pearson J.N., Rengel Z., Uptake and distribution of 65Zn and 54Mn in wheat grown at sufficient and deficient levels of Zn and Mn. I. During vegetative growth, J. Exp. Bot. 46 (1995) 833–839.

    Google Scholar 

  • Peterson P.J., The distribution of zinc in Agrostis tenuis Sibth and A.stolonifera L. tissues; J. Exp. Bot. 20 (1969) 863–865.

    Google Scholar 

  • Polson D.E., Adams M.W., Differential response of navy beans to zinc. I. Differential growth and elemental composition at excessive zinc levels, Agron. J. 62 (1970) 557–560.

    Google Scholar 

  • Powell M.J., Davies M.S., Francis D., Effects of zinc on cell, nuclear and nuclear size and on RNA and protein content in the root meristem of a zinc-tolerant and a non-tolerant cultivars of Festuca rubra L, New Phytol. 104 (1986) 671–679.

    Article  CAS  Google Scholar 

  • Rascio N., Metal accumulation by some plants growing on zinc mine deposits, Oikios 37 (1977) 250–255.

    Article  Google Scholar 

  • Rauser W.E., Estimating metallothionein in small root samples of Agrostis gigantea and Zea mays exposed to cadmium, J. Plant Physiol. 116 (1984) 253–260.

    Article  CAS  Google Scholar 

  • Rauser W.E., Phytochelatins and related peptides, Plant Physiol. 109 (1995) 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z., Ecotypes of Holcus lanatus tolerant to zinc toxicity also tolerate zinc deficiency, Ann. Bot. 86 (2000) 1119–1126.

    Article  CAS  Google Scholar 

  • Rengel Z., Romheld V., Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency, Plant Soil 222 (2000) 25–34.

    Article  CAS  Google Scholar 

  • Robinson N.J., Ratcliff R.L., Anderson P.J., Delhaize E., Berger J.M., Jackson P.J., Biosynthesis of poly (Y-glutamyl-cysteinyl) glycines in cadmium resistant Datura innoxia cells, Plant Sci. 56 (1988) 197–204.

    Article  CAS  Google Scholar 

  • Rout G.R., Samantaray S., Das P., In vitro selection and biochemical characterization of zinc and manganese adapted callus lines in Brassica spp, Plant Sci. 137 (1999) 89–100.

    Article  Google Scholar 

  • Samantaray S., Rout G.R., Das, P., (1999) In vitro selection and regeneration of zinc tolerant calli from Setaria italica L, Plant Sci. 143 (2000) 201–209.

    Article  Google Scholar 

  • Sharma A., Talukdar G., Effects of metals on chromosomes of higher organisms, Environ. Mutagen. 9 (1987) 191–226.

    Article  PubMed  CAS  Google Scholar 

  • Shen Z.G., Zhao F.J., McGrath S.P., Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum, Plant Cell Environ. 20 (1997) 898–906.

    Article  CAS  Google Scholar 

  • Shetty K.G., Hetrick B.A.D., Figge D.A.H., Schwab A.P., Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil, Environ. Pollut. 86 (1994) 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Shier W.T., Metals as toxins in plants, J. Toxicol. -Toxin Rev. 13 (1994) 205–216.

    CAS  Google Scholar 

  • Shkolnik M.Y. (Ed.), Trace Elements in Plants. Elsevier, New York, 1984, pp. 140–171.

    Google Scholar 

  • Sinha P., Jain R., Chatterjee C., Interactive effect of boron and zinc on growth and metabolism of mustard, Comm. Soil Sci. Plant Anal. 31 (2000) 41–49.

    Article  CAS  Google Scholar 

  • Sresty T.V.S., Madhava Rao K.V., Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea, Environ. Exp. Bot. 41 (1999) 3–13.

    Google Scholar 

  • Staker E.V., Cummings R.W., The influence of zinc on the productivity of certain New York peat soils, Soil Sci. Soc. Am. Proc. 6 (1941) 207–214.

    Article  CAS  Google Scholar 

  • Stiborova, M., Hromadkova R., Leblova S., Effect of ions of heavy metals on the photosynthesis characteristics of maize (Zea mays L.), Biologia 41 (1986) 1221–1228.

    Google Scholar 

  • Strickland R.C., Chaney W.R., Lamoreaux R.J., Organic matter influences phytotoxicity of cadmium to soybeans, Plant Soil 52 (1979) 393–402.

    Article  CAS  Google Scholar 

  • Subhadra A.V., Panda B.B., Metal induced genotoxic adaptation in barley (Hordeum vulgare L.) to maleic hydrazide and methyl mercuric chloride. Mutat. Res. 321 (1994) 93–102.

    Google Scholar 

  • Symeonidis L., McNeilly T., Bradshaw A.D., Differential tolerance of three cultivars of Agrostis capillaris L. to Cd, Cu, Pb, Ni and Zinc, New Phytol. 101 (1985) 309–315.

    Google Scholar 

  • Taylor G.J., Stadt K.J., Dale M.R.T., Modelling the phytotoxicity of aluminium, cadmium, copper, manganese, nickel and zinc using the Weibull frequency distribution, Can J. Bot. 69 (1991) 359–267.

    Article  CAS  Google Scholar 

  • Tomsett A.M., Thurman D.A., Molecular biology of metal tolerance of plants, Plant Cell Environ. 11 (1998) 383–394.

    Article  Google Scholar 

  • Tripathy B.C., Mohanty P., Zinc inhibited electron transport of photosynthesis isolated barley chloroplasts, Plant Physiol. 66 (1980) 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  • Turner R.G., The subcellular distribution of zinc and copper within the roots of metal-tolerant clones of Agrostis tenuis Sibth, New Phytol. 69 (1970) 725–731.

    Article  CAS  Google Scholar 

  • Turner R.G., Marshall C., The accumulation of 65Zn by root homogenates of zinc tolerant and non-tolerant clones of Agrostis tenuis Sibth, New Phytol. 70 (1972a) 539–545.

    Article  Google Scholar 

  • Turner R.G., Marshall C., The accumulation of zinc by subcellular fractions of roots of Agrostis tenuis Sibth. In relation to zinc tolerance, New Phytol. 71 (1972b) 671–676.

    Google Scholar 

  • Van Assche F., Physiological Study of Zinc Toxicity on Photosynthesis. Ph.D thesis, University of Instelling Antwerpen, Germany, 1973.

    Google Scholar 

  • Van Assche F., Clijsters H., Interaction of zinc at the protein level with photosynthetic light and dark reactions in Phaseolus vulgaris, In: Sybesma C. (Ed.), Advances in Photosynthesis Research. Part- IV, Nijhoff/Junk Publisher, The Hague, 1984, pp. 431–434.

    Google Scholar 

  • Van Assche F., Clijsters H., Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1,5-bisphosphate carboxylase/oxygenase, J. Plant Physiol. 125 (1986) 355–360.

    Article  Google Scholar 

  • Van Assche F., Clijsters H., Marcelle R., Photosynthesis in Phaseolus vulgaris L., as influenced by supra-optimal zinc nutrition, in: Marcelle R. (Ed.), Photosynthesis and Plant Development, Junk Publishers, The Hague, 1979, pp. 175–184.

    Google Scholar 

  • Van Assche F., Ceulemans R., Clijsters H., Zinc mediated effects on leaf CO2 diffusion conductances and net photosynthesis in Phaseolus vulgaris L. Photosynth. Res., 1 (1980) 171–180.

    Article  Google Scholar 

  • Verkleij J.A.C., Schat H., Mechanisms of metal tolerance in plants, in: Shaw A.J. (Ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects, CRC, Boca Raton, FL, 1990, pp. 179–193.

    Google Scholar 

  • Wahbeh M.I., Levels of zinc, manganese, magnesium, iron and cadmium in three species of seagrass from Aqaba (Jordan), Aquat. Bot. 20 (1984) 179–183.

    Article  CAS  Google Scholar 

  • Wainwright S.J., Woolhouse H.W., Physiological mechanisms of Heavy metal tolerance, in: Chadwicks M.J., Goodman G.T. (Eds.), The Ecology of Resource Degradation and Renewal, Br. Ecol. Soc. Symp., Blackwell, Oxford, 15, 1976, pp. 231–257.

    Google Scholar 

  • Wainwright S.J., Woolhouse H.W., Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth: cell elongation and membrane damage, J. Exp. Bot. 28 (1977) 1029–1036.

    Article  CAS  Google Scholar 

  • Warnock R.E., Micronutrient uptake and mobility within the corn plants (Zea mays L.) in relation to P-induced Zn deficiency, Soil Sci. Soc. Am. Proc. 34 (1970) 765–769.

    Google Scholar 

  • Watanabe F.S., Lindsay W.L., Olsen S.K., Nutrient balance involving P, Fe and Zn, Soil Sci. Soc. Am. Proc. 29 (1965) 562–565.

    Article  CAS  Google Scholar 

  • Webber J., Trace elements in Agriculture, in: Lepp N.W. (Ed.), Effect of Heavy Metal Pollution on Plants. Vol. 2. Applied Science Publishers, London, 1981, pp. 159–184.

    Google Scholar 

  • Welch R.M., Micronutrient nutrition of plants. Critical Rev, Plant Sci. 14 (1995) 49–82.

    Google Scholar 

  • Wheeler D.M., Power I.L., Comparison of plant uptake and plant toxicity of various ions in wheat, Plant Soil. 172 (1995) 167–173.

    Article  CAS  Google Scholar 

  • White M.C., Chaney R.L., Decker A.M., Differential varietal tolerance in soybean to toxic levels of zinc in sassafras sandy loam, Agron. Abstr. (1974) 144–145.

    Google Scholar 

  • White R.E., Studies on the mineral ion absorption by plants. III. The interaction of aluminium phosphate and pH on the growth of Medicago sativa, Plant Soil 46 (1976) 195–208.

    Google Scholar 

  • Whiting S.N., Leake J.R., McGrath S.P., Baker A.J.M., Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens, New Phytol 145 (2000) 199–210.

    Article  CAS  Google Scholar 

  • Whitehead D.C., Some soil-plant and root-shoot relationships of copper, zinc and manganese in white clover and perennial ryegrass, Plant Soil 97 (1987) 47–56.

    Article  CAS  Google Scholar 

  • Woolhouse H.W., Toxicity and tolerance in the responses of plants to metals, in: Lange O.L. (Ed.), Encyclopedia of Plant Physiology. New Series, Vol. 12, Part-C, Physiological Plant Ecology–III, Springer., Berlin, 1983, pp. 245–300.

    Google Scholar 

  • Ye Z.H., Baker A.J.M., Wong M.H., Willis A.J., Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia, New Phytol. 136 (1997) 469–480.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyana Ranjan Rout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Rout, G.R., Das, P. (2009). Effect of Metal Toxicity on Plant Growth and Metabolism: I. Zinc. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_53

Download citation

Publish with us

Policies and ethics