Skip to main content

Stratospheric Ozone Depletion

  • Conference paper
Twenty Years of Ozone Decline

Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOx and ClOx chains involve emission of stable molecules in very low concentration at the Earth's surface (N2O, CCl2F2, CCl3F, etc.), which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, resulting in more solar ultraviolet-B radiation (290–320 nm wavelength) reaching the surface. This ozone loss occurs in the temperate zone latitudes in all seasons and has been drastic since the early 1980s, especially in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, which is the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Restoration of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifespan of the precursor molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adel, A. (1949). Selected topics in the infrared spectroscopy of the solar system. In G. P. Kuiper (Ed.), The atmospheres of the Earth and planets (p. 269). Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Andersen, S. O., & Sarma, K. M. (2002). Protecting the ozone layer. United Nations Environment Programme: The United Nations History.

    Google Scholar 

  • Anderson, J. G. (1989). Free radicals in the Earth's atmosphere: measurement and interpretation. In Ozone depletion, greenhouse gases, and climate change (pp. 56–65). National Research Council.

    Google Scholar 

  • Anderson, J. G., Brune, W. H., & Proffitt, M. H. (1989). Ozone destruction by chorine radicals within the Antarctic vortex: the spatial and temporal evolution of ClO-O3, anticorrelation based on in situ ER-2 data. Journal of Geophysical Research 94, 11,465–11,479.

    CAS  Google Scholar 

  • Angell, J. K. (1986). The close relationship between Antarctic total ozone depletion and cooling of the Antarctic lower stratosphere. Geophysical Research Letters, 13, 1240–1243.

    Article  CAS  Google Scholar 

  • Bates, D. R., & Nicolet, M. (1950). The photochemistry of atmospheric water vapor. Journal of Geophysical Research 55, 301–327.

    Article  CAS  Google Scholar 

  • Bauer, E. (1979). A catalog of perturbing influences on stratospheric ozone, 1955–1975. Journal of Geophysical Research, 84, 6929–6940.

    Article  CAS  Google Scholar 

  • Benedick, R. E. (1998). Ozone diplomacy. In New directions in safeguarding the planet (p. 449). Cambridge, MA: Harvard University Press revised.

    Google Scholar 

  • Blake, D. R., & Rowland, F. S. (1988). Continuing worldwide increase in tropospheric methane. Science, 239, 1129–1131.

    Article  CAS  Google Scholar 

  • Booth, C. R., & Madronich, S. (1994). Radiation amplification factors: improved formula accounts for large increases in ultraviolet radiation associated with Antarctic ozone depletion. In C. S. Weiler and P. A. Penhale (eds.), Antarctic research series (vol. 62, pp. 39–42). Washington, DC: American Geophysical Union.

    Google Scholar 

  • Booth, C. R., Bernhard, G., Ehramjian, J. C., Quang, V. V., & Lynch, S. A. (2001). NSF polar programs UV spectroradiometer network 1999–2000 operations report, p. 219. San Diego: Biospherical Instruments Inc.

    Google Scholar 

  • Chang, J. S., Duewer, W. H., & Wuebbles, D. J. (1979). The atmospheric nuclear tests of the 1950's and 1960's: a possible test of ozone depletion theories. Journal of Geophysical Research, 84, 1755–1765.

    Article  CAS  Google Scholar 

  • Chapman, S. (1930). A theory of upper atmospheric ozone. Memoirs of the Royal Meteorological Society, 3, 103–125.

    Google Scholar 

  • Chappellaz, J., Barnola, J. M., Raynaud, D., Krotkevich, Y. S., & Lorius, C. (1990). Ice-core record of atmospheric methane over the past 160,000 years. Nature, 345, 127–131, doi: 10.1038/345127aO.

    Article  CAS  Google Scholar 

  • Chubachi, S., & Kaawara, R. (1986). Total ozone variations at Syowa, Antarctica. Geophysical Research Letters, 13, 1197–1198.

    Article  CAS  Google Scholar 

  • ClAP (Climatic Impacts Assessment Program) Monogr. I, (1975). In A. J. Grobecker (Ed.), The natural stratosphere of 1974 (pp. 75–51), Washington, DC: US Department of Transportation, DOT-TST-75-51.

    Google Scholar 

  • Cicerone, R. J., & Oremland, R. S. (1988). Biogeochemical aspeas of atmospheric methane. Global Biogeoehem. Cycles, 2, 299–327.

    Article  CAS  Google Scholar 

  • Cornu, M. A. (1879). Sur la limite ultra-violette spectras du Compt. Rendu, 88, 1101–1108.

    Google Scholar 

  • Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Royal Meteorological Society. Quarterly Journal, 320–325.

    Google Scholar 

  • Crutzen, P. J. (1971). Ozone production rates in an oxygen hydrogen-nitrogen oxide atmosphere. Journal of Geophysical Research, 76, 7311–7327.

    Article  CAS  Google Scholar 

  • Crutzen, P., & Arnold, F. (1986). Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime “ozone hole. Nature, 324, 651–655, doi: 10.1038/32465Iao.

    Article  CAS  Google Scholar 

  • DeFabo, E. C. (2000). Ultraviolet-B radiation and stratospheric ozone loss: potential impacts on human health in the Arctic. Int. J. Circumpolar Health, 59, 4–8.

    Google Scholar 

  • DeFabo, E. C., Noonan, F. P., Fears, T., & Merlino, G. (2004). Ultraviolet B but not Ultraviolet A radiation initiates melanoma. Cancer Research, 64, 6372–6376, doi: 10.1158/0008– 5472.CAN-04–1454.

    Article  Google Scholar 

  • DeGruijl (1999). Skin cancer and solar UV radiation. European Journal of Cancer, 35, 2003–2009, doi: 10.1016/S09598049(99)00283-X.

    Article  Google Scholar 

  • deZafra, R. L., Jaramillo, M., Parrish, A., Solomon, P., & Barrett, J. (1987). High concentrations of chlorine monoxide at low altitudes in the Antarctic spring stratosphere: Diurnal variation. Nature, 328, 408–411, doi: 10.1038/328408aO.

    Article  Google Scholar 

  • Dlugokencky, E., Masarie, K., Lang, P., & Tans, P. (1998). Continuing decline in the growth rate of the atmospheric methane burden. Nature, 393, 447–450, doi: 10.1038/30934.

    Article  CAS  Google Scholar 

  • Dütsch, H. U. (1970). Atmospheric ozone-a short review. Journal of Geophysical Research, 75, 1707–1712.

    Article  Google Scholar 

  • Etheridge, D., Steele, L., Francey, R., & Langenfelds, R. (1998). Atmospheric methane between 1000 AD and the present: evidence of anthropogenic emissions and climatic variability. Journal of Geophysical Research, 103, 15979–15993, doi: 10.1029/98JD00923.

    Article  CAS  Google Scholar 

  • Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of ozone in Antarctica reveal seasonal ClOxNOx interaction. Nature, 315, 207–210, doi: 10.1038315207ao.

    Article  CAS  Google Scholar 

  • Harris, N. R. P., & Rowland, F. S. (1986). Trends in total ozone at Arosa. EOS, 67, 875.

    Google Scholar 

  • Hartley, W. N. (1881a). On the absorption spectrum of ozone. Journal of Chemical Society, 39, 57–61.

    CAS  Google Scholar 

  • Hartley, W. N. (1881b). On the absorption of solar rays by atmospheric ozone. Journal of Chemical Society, 39, 111–128.

    CAS  Google Scholar 

  • Heidt, L. E., Lueb, R., Pollock, W., & Ehhalt, D. H. (1975). Stratospheric profiles of CCl3F and CCl2F2. Geophysical Research Letters, 2, 445–447.

    Article  CAS  Google Scholar 

  • Homer 3000 BC (?) The Iliad. ‘As a huge oak goes down at a stroke from Father Zeus, ripped by the roots and a grim reek of sulphur bursts forth. … ’ Book 14, lines 489–494 The Odyssey ‘Then, then in the same breath Zeus hit the craft with a lightning bolt and thunder. Round, she spun, reeling under the impact, filled with reeking brimstone’ Book 12, lines 447–449 and Book 14, lines 344–346 (duplicate passages) translations by Robert Fagles.

    Google Scholar 

  • Johnston, H. S. (1971). Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science, 173, 517–522.

    Article  CAS  Google Scholar 

  • Jones, R. L., Pyle, J. A., Harries, J. E., Zavody, A. M., Russell, J. M., & Gille, J. C. (1986). The water vapor budget of the stratosphere studied using LIMS and SAMS satellite data. Quarterly Journal of the Royal Meteorological Society, 112, 1127–1143, doi: 10.1256/smsqj.474 I I.

    Article  CAS  Google Scholar 

  • JPL (Jet Propulsion Laboratory) Publication 02–25 (2003). Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation number, 14.

    Google Scholar 

  • Kerr, J. B., & McElroy, C. T. (1993). Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science, 262, 1032–1034.

    Article  CAS  Google Scholar 

  • Lovelock, J. E., Maggs, R. J., & Wade, R. J. (1973). Halogenated hydrocarbons in and over the Atlantic. Nature, 241, 194–196, doi: 10.1038241194ao.

    Article  CAS  Google Scholar 

  • McCormick, M. P., Steele, H. M., Hamill, P., Chu, W. P., & Swissler, T. J. (1982). Polar stratospheric cloud sightings by SAM II. Journal of Atmospheric Science, 3, 1387–1397. doi: 10.1175/15200469(1982)039 <I 387:PSCSBS> 2.0.CO;2.

    Article  Google Scholar 

  • Migeotte, M. V. (1949). On the presence of CH4, N2O and NH3 , in the Earth's atmosphere. In G. P. Kuiper (Ed.), The atmospheres of the Earth and planets (p. 284). Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Molina, L. T., & Molina, M. J. (1987). Production of Cl2O2, from the self-reaction of the ClO radical. Journal of Physical Chemistry, 91, 433–436, doi: 10.102J1;100286a035.

    Article  CAS  Google Scholar 

  • Molina, M. J., & Rowland, F. S. (1974). Chlorine atom-catalysed destruction of ozone. Nature, 249, 810–812, doi: 10.1038/249810ao.

    Article  CAS  Google Scholar 

  • Molina, M. J., Tso, T. L., Molina, L. T., & Wang, F. C. Y. (1987). Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride and ice. Release of active chlorine. Science, 238, 1253–1260.

    Article  CAS  Google Scholar 

  • NAS (National Academy of Sciences) (1975). Environmental Impact of stratospheric flight, biological and climatic effects of aircraft emissions in the stratosphere. Washington, DC: Climatic Impact Committee.

    Google Scholar 

  • NAS (National Academy of Sciences) 1982 causes and effects of stratospheric ozone reduction: an update. Washington, DC, Commission on Chemistry & Physics. Ozone depletion, Commission on Biology. Effects increased solar ultraviolet radiation. 339 pp.

    Google Scholar 

  • Newman, P., & Schoeberl, M. (1986) October. Antarctic temperature and total ozone trends from 1979–1985. Geophysical Research Letters, 13, 1206–1209.

    Article  CAS  Google Scholar 

  • Nolte, P. (1999). Christian Friedrich Schonbein: Ein Leben fur die Chemie, Sonderreihe A der Metzinger Heimatblatter. Band, 5, 312.

    Google Scholar 

  • Prather, M., Midgley, P., Rowland, F. S., & Stolarski, R. (1996). The ozone layer: the road not taken. Nature, 381, 551–554, doi: 10.1038/381551ao.

    Article  CAS  Google Scholar 

  • Prinn, R., Cunnold, D., Rasmussen, R., Simmonds, P., Alyea, F., et al. (1987). Atmospheric trends in methylchloroform and the global average for the hydroxyl radical. Science, 238, 945–950.

    Article  CAS  Google Scholar 

  • Rowland, F. S. (1990). Stratospheric ozone depletion by chloroftuorocarbons. Ambio, 19, 281–292.

    Google Scholar 

  • Rowland, F. S. (1991). Stratospheric ozone depletion. Annual Review of Physical Chemistry,42, 731–768, doi: 10.1146/annurev.pc.42.100191.003503.

    Article  CAS  Google Scholar 

  • Rowland, F. S., & Molina, M. J. (1975). Chloroftuoromethanes in the environment. Review of Geophysical Space Physics, 13, 1–35.

    Article  CAS  Google Scholar 

  • Rowland, F. S., Sato, H., Khwaja, H. & Elliott, S. M. (1986). The hydrolysis of chlorine nitrate and its possible atmospheric significance. Journal of Physical Chemistry, 90, 1985–1988, doi: 10.10211;100401aOOI.

    Article  CAS  Google Scholar 

  • Rowland, F. S., Harris, N. R. P., Bojkov, R. D., & Bloomfield, P. (1989). Statistical error analyses of ozone trends: winter depletion in the northern hemisphere. In R. D. Bojkov & P. Fabian (Ed.), Ozone in the Atmosphere (pp. 71–75). Hampton, VA: Deepak Publishing.

    Google Scholar 

  • Sato, H., & Rowland, F. S. (1984). Paper presented at the International Meeting on Current Issues in our Understanding of the Stratosphere and the Future of the Ozone Layer. West Germany: Feldafing.

    Google Scholar 

  • Schmeltekopf, A. L. et al. (1975). Measurements of stratospheric CFCl3, CF2Cl2, and N2O. Geophysical Research Letters, 2, 393–396.

    Article  CAS  Google Scholar 

  • Schutz, K., Junge, C., Beck, R., & Albrecht, B. (1970). Studies of atmospheric N,O. Journal of Geophysical Research, 75, 2230–2246.

    Article  Google Scholar 

  • Scotto, J., Cotton, G., Urbach, F., Berger, D., & Fears, T. (1988). Biologically effective ultraviolet radiation: surface measurements in the United States, 1974 to 1985. Science, 239, 762–764.

    Article  CAS  Google Scholar 

  • Sekiguchi, Y. (1986). Antarctic temperature and total ozone trends from 1979–1985. Geophysical Research. Letters, 13, 1206–1209.

    Article  Google Scholar 

  • Simpson, I., Blake, D. R., Rowland, F. S., & Chen, T. Y. (2002). Implications of the recent fluctuations in the growth rate of tropospheric methane. Geophysical Research Letters, 29, 1171–1174 plus supplementary data.

    Article  Google Scholar 

  • Singer, S. F. (1989). Stratospheric ozone: science and policy. In S. F. Singer (Ed.), Global climate change (pp. 157–162). New York: Paragon House.

    Google Scholar 

  • Solomon, S., Garcia, R. R., Rowland, F. S., & Wuebbles, D. J. (1986). On the depletion of Antarctic ozone. Nature, 321, 755–758, doi: 10.1038/321755ao.

    Article  CAS  Google Scholar 

  • Stolarski, R., & Cicerone, R. J. (1974). Stratospheric chlorine: a possible sink for ozone. Canadian Journal of Chemistry, 52, 1610–1615.

    Article  CAS  Google Scholar 

  • Stolarski, R. S., Krueger, A. J., Schoeberl, M. R., McPeters, R. D., Newman, P. A., & Alpert, J. C. (1986). Nimbus-7 SBUV/TOMS measurements of the springtime Antarctic ozone decrease. Nature, 322, 80–811, doi: 10.1038/322808aO.

    Article  Google Scholar 

  • Tolbert, M. A., Rossi, M. J., Malhotra, R., & Golden, D. M. (1987). Reaction of chlorine nitrate with hydrogen chloride and water at Antarctic stratospheric temperatures. Science, 238, 1258–1260.

    Article  CAS  Google Scholar 

  • Toon, O. B., Hamill, P., Turco, R. P., & Pinto, J. (1986). Condensation of HNO, and HCl in the winter polar stratosphere. Geophysical Research Letters, 13, 1284–1287.

    Article  CAS  Google Scholar 

  • Weatherhead, E. C., Tiao, G. C., Reinsel, G. E., Frederick, J. E., DeLuisi, J. J., Choi, D. S., et al. (1997). Analysis of long term behavior of ultraviolet radiation measured by Robertson-Berger meters at 14 sites in the United States. Journal of Geophysical Research, 102, 8737–8754, doi: 10.1029/96JD03590.

    Article  CAS  Google Scholar 

  • WMO (World Meteorological Organization) Report No. 16, 3 Volumes (1986). Atmospheric ozone 1985, Global ozone research and monitoring project, 1150 p.

    Google Scholar 

  • WMO (World Meteorological Organization) Report No. 18 Volume 1. (1990). Report of the International Ozone Trends Panel, ‘Trends in Total colunm ozone measurements’, Rowland, F. S., Chair: Chapter Four, pp. 181–382.

    Google Scholar 

  • WMO (World Meteorological Organization) Report No. (2002). 47. 2003 Global research and monitoring project: Scientific assessment of ozone depletion.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Rowland, F.S. (2009). Stratospheric Ozone Depletion. In: Zerefos, C., Contopoulos, G., Skalkeas, G. (eds) Twenty Years of Ozone Decline. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2469-5_5

Download citation

Publish with us

Policies and ethics