Skip to main content

International Multi-Instruments Ground-Based Networks: Recent Developments Within the Network for the Detection of Atmospheric Composition Changes

  • Conference paper
Twenty Years of Ozone Decline

The necessity for a careful monitoring of the endangered ozone layer was considered to be of prime importance after the discovery of the Antarctic hole in the early 1980s. To that aim, a ground-based global network was established in 1991 in order to monitor not just the ozone but also the chemical and physical parameters that influence the ozone budget. The Network for the Detection of Stratospheric Changes (NDSC) relied on the worldwide measurement stations equipped with multiple instruments for the parallel monitoring of a variety of atmospheric parameters involved in the ozone depletion issue. In recent years, new developments in the measurement techniques broadened the scope of the network to the monitoring of atmospheric composition in the free and upper troposphere. The name of the network was changed to Network for the Detection of Atmospheric Composition Changes (NDACC) in order to reflect these new priorities. At present, the NDACC includes more than 70 research stations throughout the world, equipped with active and passive remote sensing instruments to monitor the atmospheric composition and its link to climate change. This chapter provides an overview of the network implementation and operation, with particular emphasis on data quality issues. It includes examples of recent results on the long-term evolution of atmospheric parameters relevant to ozone depletion and describes the new development in the network-observing capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barret, B., De Mazière, M., & Demoulin, P. (2002). Retrieval and characterization of ozone profiles from solar infrared spectra at the Jungfraujoch. Journal of Geophysical Research, 10, D24, 4788, doi: 10.1029/2001JD001298.

    Article  Google Scholar 

  • Braathen, G. (2007). GCOS-GAW agreement establishing the WMO/GAW global atmospheric ozone monitoring networks as global baseline networks of GCOS, http://www.wmo.ch/pages/ prog/gcos/scXV/Ozone_agreement.rev.pdf

  • Braathen, G. (2006). Report from the NDACC meeting on atmospheric water vapour measurements, Bern, Switzerland, http://www.iapmw.unibe.ch/research/collaboration/ndsc-microwave/workshop/2006/Bern_Report_H2O _workshop2006.pdf

  • Calisesi, Y., Wernli, H., & Kampfer, N. (2001). Midstratospheric ozone variability over Bern related to planetary wave activity during the winters 1994–1995 to 1998–1999. Journal of Geophysical Research, 106(D8), 7903–7916.

    Article  CAS  Google Scholar 

  • Chipperfield, M. P. (1999). Multiannual simulations with a three-dimensional chemical transport model. Journal of Geophysical Research, 104, 1781–1805.

    Article  CAS  Google Scholar 

  • De Mazière, M., Vigouroux, C, Gardiner, T., Coleman, M., Woods, P., Ellingsen, K., et al. (2005). The exploitation of ground-based Fourier transform infrared observations for the evaluation of tropospheric trends of greenhouse gases over Europe. Environmental Sciences, 2, 283–293.

    Article  Google Scholar 

  • Godin, S., Carswell, A., Donovan, D., Claude, H., Steinbrecht, W., Mcdermid, S., et al. (1999). Ozone differential absorption Lidar algorithm intercomparison. Applied Optics, 38(30), 6225– 6236.

    Article  CAS  Google Scholar 

  • Goutail, F., Pommereau, J.-P., Phillips, C., Deniel, C., Sarkissian, A., Lefèvre, F., Kyro, E., et al. (1999). Depletion of column ozone in the Arctic during the Winters 1993–94 and 1994–95. Journal of Atmospheric Chemistry, 32, 1–34.

    Article  CAS  Google Scholar 

  • Goutail, F., Pommereau, J.-P., Lefèvre, F., Van Roozendael, M., Andersen, S. B., Kastad Høiskar, B.-A., et al. (2005). Early unusual ozone loss during the Arctic winter 2002/2003 compared to other winters. Atmospheric Chemistry and Physics, 5, 665–677.

    CAS  Google Scholar 

  • Guirlet, M., Keckhut, P., Godin, S., & Mégie, G. (2000). Description of the long-term ozone data series obtained from different instrumental techniques at a single location: The Observatoire de Haute-Provence (43.9°N, 5.7°E). Annals of Geophysics, 18, 1325–1339.

    Article  CAS  Google Scholar 

  • Hase, F., Blumenstock, T., & Paton-Walsh, C. (1999). Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software. Applied Optics, 38, 3417–3422.

    Article  CAS  Google Scholar 

  • Hendrick, F. et al. (2007). Retrieval of stratospheric and tropospheric BrO profiles and columns using ground-based zenith-sky DOAS observation at Harestua, 60° N. Atmospheric Chemistry and Physics, 7, 4869–4885.

    CAS  Google Scholar 

  • Hofmann, D. et al. (1995). Intercomparison of UV/visible spectrometers for measurements of stratospheric NO2 for the Network for the detection of stratospheric changes. Journal of Geophysical Research, 100, 16765–16792.

    Article  CAS  Google Scholar 

  • Hönninger, G., von Friedeburg, C., & Platt, U. (2004). Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmospheric Chemistry and Physics, 4, 231–254.

    Google Scholar 

  • Jäger, H. (2005). Long-term record of lidar observations of the stratospheric aerosol layer at Garmisch-Partenkirchen. Journal Geophysical Research, 110, D08106, doi: 10.1029/ 2004JD005506.

    Google Scholar 

  • Jiang, Y. B. et al. (2007). Validation of aura microwave limb sounder ozone by ozonesonde and lidar measurements. Journal of Geophysical Research, 112, D24S34, doi: 10.1029/ 2007JD008776, 2007.

    Google Scholar 

  • Keckhut, P., McDermid, S., Swart, D., McGee, T., Godin-Beekmann, S., Adriani, A., et al. (2004). Review of ozone and temperature lidar validations performed within the framework of the network for the detection of stratospheric changes. Journal of Environmental Monitoring, 6, 721–733.

    Article  CAS  Google Scholar 

  • Lambert, J.-C., Soebijanta, V., Orsolini, Y., Andersen, S. B., Bui Van, A., et al. (2003). Coordinated ground-based validation of ENVISAT atmospheric chemistry with NDSC network data: Commissioning Phase Report, in Proc. First ENVISAT Validation Workshop, ESA/ESRIN, Italy, 9–13 Dec. 2002, ESA SP-531.

    Google Scholar 

  • Leblanc, T., Stuart McDermid, I., & Aspey, R. A. (2008). First year operation of a new water vapor Raman lidar at the JPL-Table mountain facility, California. Journal of Atmospheric and Oceanic Technology, Volume preprint, Issue 2007 (February 2008), doi: 10.1175/ 2007JTECHA978.1.

    Google Scholar 

  • Liley, J., Johnston, P., McKenzie, R., Thomas, A., & Boyd, I. (2000). Stratospheric NO2 variations from a long time series at Lauder, New Zealand. Journal of Geophysical Research, 105(D9), 11633–11640.

    Article  CAS  Google Scholar 

  • Mahieu, E., Duchatelet, P., Zander, R., Demoulin, P., Servais, C., Rinsland, C. P., et al. (2004). The evolution of inorganic chlorine above the Jungfraujoch station: An update, in Ozone, Vol. II, Proceedings of the Quadrennial Ozone Symposium, Kos, Greece, 1–8 June 2004, pp. 997–998.

    Google Scholar 

  • McGee, T. J., Whiteman, D., Ferrare, R., Butler, J. J., & Burris, J. (1991). STROZ LITE: Stratospheric ozone lidar trailer experiment. Optical Engineering, 30(31), 31–39.

    Article  CAS  Google Scholar 

  • McLinden, C., Olsen, S., Prather, M., & Liley, J. (2001). Understanding trends in stratospheric NOy and NO2. Journal of Geophysical Research, 106(D21), 27787–27793.

    Article  CAS  Google Scholar 

  • Meijer, Y. J., et al., Long-term validation of GOMOS, MIPAS and SCIAMACHY (2006) Ozone and temperature profiles by the ENVISAT quality assessment with lidar (EQUAL) project, Proceedings of the First Conference on Atmospheric Science (ATMOS) (Frascati, Italy, 8–12 May 2006), ESA SP-628.

    Google Scholar 

  • Neuber, R., Beyerle, G., Fiocco, G., Di Sarra, A., Fricke, K. H., David, C., et al. (1994). Latitudinal distribution of stratospheric aerosols during the EASOE winter 1991/92. Geophysical Research Letters, 21(13), June 22.

    Google Scholar 

  • Newchurch, M. J., Yang, E.-S., Cunnold, D. M., Reinsel, G. C., Zawodny, J. M., & Russell III, J. M. (2003). Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery. Journal of Geophysical Research, 108(D16), 4507, doi: 10.1029/2003JD003471.

    Article  CAS  Google Scholar 

  • Newman, P. A., & Rex, M. (Lead Authors), co-authors and contributors (2007). Polar Ozone: Past and Present, Chapter 4 in Scientific Assessment of Ozone Depletion, 2006. Global Ozone Research and Monitoring Project — Report #50, 572 pp., World Meteorological Organisation, Geneva, Switzerland, 2007.

    Google Scholar 

  • Pougatchev, N. S., Connor, B. J., & Rinsland, C. P. (1995). Infrared measurements of the ozone vertical distribution above Kitt Peak. Journal of Geophysical Research, 100, 16689– 16697.

    Article  CAS  Google Scholar 

  • Randel, W. J., & co-authors. (2004). The SPARC intercomparison of middle atmosphere climatologies. Journal of Climate, 17, 986–1003.

    Article  Google Scholar 

  • Ricaud, P., Monnier, E., Goutail, F., David, C., Godin, S., Froidevaux, L., et al. (1998). The stratosphere over Dumont d'Urville, Antarctica, in Winter 1992. Journal of Geophysical Research, 103(D11), 13267–13284.

    Article  CAS  Google Scholar 

  • Rinsland, C. P., Mahieu, E., Zander, R., Jones, N. B., Chipperfield, M. P., Goldman, A., et al. (2003). Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization. Journal of Geophysical Research, 108(D8), 4252, doi: 10.1029/2002-JD003001.

    Article  CAS  Google Scholar 

  • Rodgers, C. D. (2000). Inverse methods for atmospheric sounding: Theory and Practice, Series on Atmospheric, Oceanic and Planetary PhysicsVol. 2, Singapore: World Scientific Publishing.

    Google Scholar 

  • Schneider, M., Blumenstock, T., Chipperfield, M. P., Hase, F., Kouker, W., Reddmann, T., et al. (2005). Subtropical trace gas profiles determined by ground-based FTIR spectroscopy at Izana (28N, 16W): Five-year record, error analysis, and comparison with 3-D CTMs. Atmospheric Chemistry and Physics, 5, 153–167.

    CAS  Google Scholar 

  • Solomon, P., Barrett, J., Mooney, T., Connor, B., Parrish, A., & Siskind, D. E. (2006). Rise and decline of active chorine rine in the stratosphere. Geophysical Research Letters, 33, L18807, doi: 10.1029/2006GL027029.

    Google Scholar 

  • Steinbrecht, W., et al. (1997). NDSC intercomparison of stratospheric aerosol processing algorithms, in: Ansmann, A., Neuber, R., Rairoux, P., and Wandinger, U. (ed.), Advances in Atmospheric Remote Sensing with Lidar. Proceedings of the 18th International Laser Radar Conference (ILRC), Berlin, Germany, 22–26 July 1996, Springer Verlag, 501–504.

    Google Scholar 

  • Steinbrecht, W., Claude, H., Schönenborn, F., McDermid, I. S., Leblanc, T., Godin-Beekmann, S., et al. (2006). Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC). Journal of Geophysical Research, 111, D10308, doi: 10.1029/2005JD006454.

    Google Scholar 

  • Stolarski, R., Randel, W., (Lead Authors), co-authors and contributors (1998). Ozone change as a function of altitude, in Assessment of Trends in the Vertical Distribution of Ozone, SPARC/IOC/GAW, WMO, Ozone Research and Monitoring Project Report No. 43.

    Google Scholar 

  • Theys, N., Van Roozendael, M., Hendrick, F., Fayt, C., Hermans, C., Baray, J.-L., et al. (2007). Retrieval of stratospheric and tropospheric BrO columns using multi-axis DOAS measurements at Reunion Island (21°S, 56°E). Atmospheric Chemistry and Physics, 7, 4733– 4749.

    Article  CAS  Google Scholar 

  • Vandaele, A. C., et al. (2005). An intercomparison campaign of ground-based UV-visible measurements of NO2, BrO, and OClO slant columns: Methods of analysis and results for NO2. Journal of Geophysical Research, 110(D8), D08305.

    Google Scholar 

  • Vigouroux, C., De Mazière, M., Demoulin, P., Servais, C., Hase, F., Blumenstock, T., et al. (2008). Evaluation of ozone tropospheric and stratospheric trends over Western Europe from ground-based FTIR network observations. submitted to Atmos. Phys. Chem. Disc., 2008.

    Google Scholar 

  • Whiteman, D. N., Melfi, S. H., & Ferrare, R. A. (1992). Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. Applied Optics 31, 3068.

    Article  CAS  Google Scholar 

  • Zander, R., Mahieu, E., Demoulin, P., Duchatelet, P., Servais, C., Roland, G., et al. (2005). Evolution of a dozen non-CO2 greenhouse gases above Central Europe since the mid-1980s. Environmental Sciences, 2(2–3), 295–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Godin-Beekmann, S. (2009). International Multi-Instruments Ground-Based Networks: Recent Developments Within the Network for the Detection of Atmospheric Composition Changes. In: Zerefos, C., Contopoulos, G., Skalkeas, G. (eds) Twenty Years of Ozone Decline. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2469-5_10

Download citation

Publish with us

Policies and ethics